首页|基于GoogLeNet与迁移学习的质子交换膜燃料电池集成系统故障诊断

基于GoogLeNet与迁移学习的质子交换膜燃料电池集成系统故障诊断

扫码查看
为准确判别质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)系统在动态阶跃工作电流下的故障类型,该文建立了PEMFC集成系统模型,提出一种基于GoogLeNet卷积神经网络与迁移学习的PEMFC故障诊断方法.首先,根据燃料电池运行过程的电化学反应机理与经验公式建了PEMFC集成系统模型,辅机系统包括冷却系统、空气供给系统和供氢系统.然后,搭建燃料电池测试台架,利用实验数据验证搭建的PEMFC集成系统模型,并改变模型部件参数产生特征故障图像数据集.最后,采用迁移学习将预训练模型中的权重迁移到 GoogLeNet 模型中,以提高分类模型的收敛速度和泛化能力.2 000 组故障样本诊断结果表明,PEMFC集成系统在正常、冷却系统故障、氢气饥饿、空气饥饿和水淹故障共5 种运行状态下的诊断精确率分别为 99.30%、100%、99.10%、100%和 99.10%,综合诊断准确率达 99.50%,结果证明所提方法具有较高的分类精度和鲁棒性.
Fault Diagnosis of Proton Exchange Membrane Fuel Cell Integrated System Based on GoogleNet and Transfer Learning
In order to accurately identify the fault types of proton exchange membrane fuel cell(PEMFC)systems under dynamic step operating currents,this paper establishes a PEMFC integrated system model and proposes a PEMFC fault diagnosis method based on GoogLeNet convolutional neural network and migration learning.First,the PEMFC integrated system model is established based on the electrochemical reaction mechanism and empirical equations of the fuel cell operation process,and the auxiliary system includes the cooling system,air supply system and hydrogen supply system.Then,a fuel cell test rig is built to verify the built PEMFC integrated system model using experimental data,and the model component parameters are changed to generate characteristic fault image datasets.Finally,migration learning is used to migrate the weights from the pre-trained model to the GoogLeNet model to improve the convergence speed and generalization ability of the classification model.2000 sets of fault sample diagnosis results show that the diagnostic accuracy of the PEMFC integrated system under a total of five operating conditions,namely normal,cooling system fault,hydrogen starvation,air starvation and flooding fault,is 99.30%,100%,99.10%,100%and 99.10%,respectively;and the comprehensive diagnosis accuracy reaches 99.50%,which proves that the proposed method has high classification accuracy and robustness.

proton exchange membrane fuel cell(PEMFC)integrated systemGoogLeNet convolutional neural networktransfer learningfault diagnosis

赵波、刘相万、章雷其、陈哲、张领先、谢长君

展开 >

国网浙江省电力有限公司电力科学研究院,浙江省 杭州市 310014

武汉理工大学自动化学院,湖北省 武汉市 430070

质子交换膜燃料电池集成系统 GoogLeNet卷积神经网络 迁移学习 故障诊断

国家重点研发计划项目国网浙江电力有限公司科技项目

2020YFB150680052110421005H

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(13)
  • 3