首页|基于改进Deformable DETR模型的多源局部放电识别方法及其应用

基于改进Deformable DETR模型的多源局部放电识别方法及其应用

扫码查看
基于图像的局部放电识别方法大部分仅对单源局部放电谱图有效,无法识别多源局部放电谱图.为实现对多源局部放电谱图的识别,该文提出一种基于Transformer架构的局部放电Deformable DETR目标检测模型,收集典型单源局部放电和多源局部放电数据,生成局部放电相位角解析和极坐标相位分布解析谱图数据集.在Deformable DETR模型中引入去噪训练任务和贝叶斯优化算法,优化了局部放电目标检测模型;编写局部放电谱图采集和识别程序,并使用优化后的局部放电Deformable DETR模型对单源和多源局部放电谱图进行识别.结果表明:局部放电 Deformable DETR模型不仅可有效识别出单源和多源局部放电的类型,而且大幅提升了局部放电类型识别的收敛速度和精度等性能.在对真实绝缘缺陷电动机的局部放电谱图识别中,局部放电Deformable DETR模型的识别准确率达到 91%,证明该模型在实际应用中的有效性.
Pattern Recognition Methods of Multi-source Partial Discharge Based on the Improved Deformable DETR Model and its Application
Pattern recognition methods of partial discharge(PD)utilizing images are efficient for the single PD source,yet they face challenges in recognizing the multi-source PD.An object detection model is proposed for the recognition of multi-source PD according to Deformable detection with transformers(Deformable DETR).Typical single-source PD and multi-source PD signals are collected by experiment.Two types of PD spectra,namely phase-resolved partial discharge spectrum and polar coordinate phase-resolved spectrum,are used to generate the data set.The denoising training task and Bayesian optimization algorithm are introduced to optimize the performance of the Deformable DETR model.Single-source and multi-source PD spectra are identified by the optimized PD Deformable DETR model.Results show that the proposed model can effectively recognize the source of single-and multi-PD patterns.In addition,compared with common types of object detection models,the performance of the PD Deformable DETR model can be evidently improved at the cost of losing a few efficiencies.Finally,the PD spectra of real motors with insulation defects are identified by the PD Deformable DETR model.The recognition accuracy reaches 91%,which shows the validity of this proposed method.Additionally,the acquisition and recognition program of PD spectrum is developed.The paper provides novel perspectives for identifying multi-source PD.

partial dischargepattern recognitionDeformable DETRobject detectionmulti-source partial discharge

雷志鹏、彭川、许子涵、姜宛廷、李传扬、吝伶艳、彭邦发

展开 >

煤矿电气设备与智能控制山西省重点实验室(太原理工大学电气与动力工程学院),山西省 太原市 030024

电力系统及大型发电设备安全控制和仿真国家重点实验室(清华大学电机系),北京市 海淀区 100084

局部放电 模式识别 Deformable DETR 目标检测 多源局部放电

山西省留学回国人员科技活动择优资助项目国家自然科学基金项目

2024000551977137

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(15)
  • 10