首页|不确定环境下基于多智能体Q学习的海上风电输电工程电压调整降损优化

不确定环境下基于多智能体Q学习的海上风电输电工程电压调整降损优化

扫码查看
为了达到海上风电输电工程降损的目的,该文首先详细推导海上风电输电工程海缆传输效率函数,分析海缆传输效率影响因素和有载变压器分接头挡位优化降损原理,建立海缆输电工程日损耗优化模型;其次,考虑降损优化中风电场出力及并网点电压的波动,鉴于随机变量时间序列自相关性分析,提出一种基于预测数据驱动的高维凸包不确定集合建模方法,获得极限场景,降低决策保守性的同时提升计算效率;然后,采用 Q 学习算法进行训练,并结合多智能体系统优化方法求解优化模型,分接头挡位优化和调整时刻优化交替进行,智能体在动作策略与风电场运行状态的交互中不断学习,形成海上风电场日最佳分接头挡位及分接头挡位最佳调整时刻策略。最后,通过对某一海上风电场 220 kV交流海缆输电工程的仿真分析,验证所提模型的合理性以及方法的有效性。
Optimization of Voltage Regulation and Loss Reduction of Offshore Wind Power Transmission Based on Multi-agent Q-learning in Uncertain Environment
In order to achieve the purpose of reducing the loss of the offshore wind power transmission project,the paper deduces the transmission efficiency function of the submarine cable in the offshore wind power transmission project in detail,analyzes the influencing factors of the transmission efficiency of the submarine cable and the loss reduction principle of the optimization for the on-load transformer tap changer,and establishes the daily loss optimization model of the submarine cable transmission project.Then,given the time series auto-correlation analysis of random variables,a predictive data-driven approach to modeling a high-dimensional convex hull uncertain set is applied in this paper to consider the fluctuations in the wind farm output and the grid network voltage in the loss reduction optimization,which gets extreme scenarios and reduces the decision conservatism while improving the computational efficiency.In addition,the Q-learning algorithm is used for training based on extreme scenarios obtained and combined with the multi-agent system optimization method to solve the optimization model by the tap position optimization and adjustment time optimization alternately.The agent learns from the interaction between the action strategy and the wind farm state,so as to form the best tap changer setting and the best adjustment time strategy under various operating states of the offshore wind farm.Finally,the rationality of the proposed model and the validity of the method are verified through the simulation analysis of a 220 kV AC submarine cable transmission project in an offshore wind farm.

offshore wind power transmissionpower loss reductionon-load tap changer(OLTC)multi-agent Q-learning algorithmuncertainties

郑弘奇、江岳文、戴锦山

展开 >

福州大学电气工程与自动化学院,福建省 福州市 350108

智能配电网装备福建省高校工程研究中心(福州大学),福建省 福州市 350108

福建中闽海上风电有限公司,福建省 莆田市 351100

海上风电输电工程 有功降损 有载变压器挡位优化 多智能体Q学习算法 不确定性

福建省科技重大专项专题项目

2022HZ028010

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(20)