首页|基于改进鲸鱼算法优化GRU的PEMFC老化预测

基于改进鲸鱼算法优化GRU的PEMFC老化预测

扫码查看
为提高质子交换膜燃料电池(proton exchange membrane fuel cells,PEMFC)老化预测的可控性和预测精度,提出一种基于改进的鲸鱼优化算法(improved whale optimization algorithm,IWOA)优化门控循环单元(gated recurrent unit,GRU)神经网络的PEMFC电压预测方法.采用IWOA获得GRU的最优超参数组,再利用GRU准确预测PEMFC电压.采用静态、准动态和动态工况下3组老化实验数据集,将提出的方法与反向传播神经网络、极限学习机、循环神经网络、长短期记忆神经网络、GRU 和鲸鱼算法优化门控循环单元这6种方法相比较,所提出方法具有最高的老化预测和剩余使用寿命(remaining useful life,RUL)估计精度.在静态、准动态和动态工况下,训练集占比为50%时,相比于 GRU,所提出方法的预测结果的均方根误差分别降低 56.99%、35.12%和 9.95%.因此,该方法能够实现高精度PEMFC老化趋势和RUL预测.
PEMFC Aging Prediction Based on Improved Whale Optimization Algorithm Optimized GRU
To improve the controllability and prediction accuracy of aging prediction for proton exchange membrane fuel cells(PEMFC),this paper proposes a PEMFC voltage prediction method based on improved whale optimization algorithm(IWOA)optimized gated recurrent unit(GRU)neural network.The optimal hyperparameters of GRU are obtained by IWOA,and then GRU is used to accurately predict the PEMFC voltage.Three sets of aging experimental data under static,quasi-dynamic and dynamic conditions are used to compare the proposed method with six methods:back propagation neural network,extreme learning machine,recurrent neural network,long short-term memory neural network,GRU and whale algorithm optimized gated recurrent unit.The proposed method has the highest aging prediction and remaining useful life(RUL)estimation accuracy.Under static,quasi-dynamic and dynamic conditions,when the training set ratio is 50%,compared with GRU,the root mean square error of the prediction results of the proposed method is reduced by 56.99%,35.12%and 9.95%,respectively.Therefore,this method can achieve high-precision PEMFC aging trend and RUL prediction.

proton exchange membrane fuel cellwhale optimization algorithmgated recurrent unitAging predictionremaining useful life

李浩、杨扬、朱文超、谢长君

展开 >

武汉理工大学自动化学院,湖北省 武汉市 430070

现代汽车零部件技术湖北省重点实验室(武汉理工大学),湖北省 武汉市 430070

质子交换膜燃料电池 鲸鱼优化算法 门控循环单元 老化预测 剩余使用寿命

国家重点研发计划项目广东省重点领域研发计划项目

2020YFB15068022020B0909040004

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(20)