首页|基于时空关联特征与GCN-FEDformer的风速短期预测方法

基于时空关联特征与GCN-FEDformer的风速短期预测方法

扫码查看
精准预测风速可以提高风电功率预测的准确性,现有风速预测方法未充分挖掘相邻多风场之间的空间相关性,在具备多风场数据及其相关性较强条件下风速预测准确性尚有较大提升空间.为了充分利用空间相关性信息,提出一种基于图卷积网络(graph convolution networks,GCN)和频率增强 分 解 Transformer(frequency enhanced decomposed transformer,FEDformer)的风速预测模型,即 GFformer,GCN 用于提取风速空间特征,FEDformer 用于学习时序特征.同时,还构造一种从强度、时滞2个维度分别表征相关关系的复数邻接矩阵,使得GFformer能够更全面地捕捉相邻风电场之间风速的时空相关性,进一步提高风速预测的准确性.在具备25个风电场数据的案例研究中,GFformer相比其他对比模型表现更优.
Short-term Wind Speed Forecasting Based on GCN and FEDformer
Accurately forecasting wind speed can enhance the accuracy of wind power forecasting.However,existing wind speed forecasting methods mostly ignore the spatial correlation between neighboring wind farms.There is significant potential for improving wind speed forecasting accuracy when abundant data from multiple wind farms and their strong interdependencies are available.To fully exploit the spatial correlation information,we propose a novel wind speed forecasting model based on GCN and frequency-enhanced decomposed transformer(FEDformer),i.e.,GFformer.The GCN is utilized for extracting spatial features of wind speed,while the FEDformer is employed for learning temporal features.Moreover,this paper constructs a complex adjacency matrix that characterizes the correlation relationship from two dimensions:intensity and temporal lag.This enables GFformer to capture the spatiotemporal correlations of wind speed between neighboring wind farms more comprehensively,thereby further improving the accuracy of wind speed forecasting.In a case study with a dataset consisting of 25 wind farms,GFformer outperforms other benchmark models.

wind speed forecastinggraph convolutional networkfrequency enhanced decomposed transformer(FEDformer)spatiotemporal features

孙亦皓、刘浩、胡天宇、王飞

展开 >

华北电力大学国际教育学院,河北省 保定市 071003

北京科技大学计算机与通信工程学院,北京市 海淀区 100083

风速预测 图卷积网络 频率增强分解Transformer(FEDformer) 时空特征

国家自然科学基金项目

62172036

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(21)