首页|时空信息融合的堆芯自给能中子探测器故障检测与隔离方法

时空信息融合的堆芯自给能中子探测器故障检测与隔离方法

扫码查看
自给能中子探测器(self-powered neutron detector,SPND)作为新一代核电厂的重要核测设备,其健康状态关乎反应堆安全运行.鉴于现有故障检测方法侧重于时域分析以构建数据驱动模型,未充分考虑SPND在堆芯内的全局空间耦合关系,为此,该文提出一种时空信息融合的堆芯SPND故障检测与隔离方法.首先,结合SPND运行数据与堆内探测器组件布局,构建面向SPND故障检测的时空图数据;其次,结合图卷积网络-门控循环单元(graph convolution network-gate recurrent unit,GCN-GRU)与故障隔离(fault isolation,FI)策略,设计SPND实时故障检测模型;最后,利用某地区压水堆历史监测数据与模拟故障样本进行算例分析,表明该方法可有效融合整体SPND的时空联合信息以重构个体SPND的电流信号,进而准确检测与隔离故障SPND,且具有较好的精确性和普适性.
Fault Detection and Isolation for In-core Self-powered Neutron Detectors Using Spatial-temporal Information Fusion
As the essential nuclear measurement equipment in new generation nuclear power plants,the self-powered neutron detector(SPND)plays a crucial role in ensuring the safe operation of reactors.The existing fault detection methods focus on time-domain analysis to build data-driven models,without leveraging the spatial coupling relationship of neutron flux in the reactor core.Therefore,an in-core SPND fault detection and isolation method integrating spatial-temporal information is proposed.First,the spatial-temporal graph data for SPND fault detection are established by combining SPND data with the layout of detector components within the reactor.Then,a real-time SPND fault detection model is designed using the graph convolution network-gate recurrent unit(GCN-GRU)and fault isolation(FI)strategy.Finally,using historical data and simulated fault samples from a pressurized water reactor,case analysis demonstrates that the method effectively fuses the spatial-temporal joint information of the overall SPNDs to reconstruct the current signals of individual SPNDs.The method can accurately detect and isolate faulty SPNDs,which exhibits higher accuracy and universality.

nuclear power plantself-powered neutron detectorfault detectionfault isolationgraph convolution networkgate recurrent unit

林蔚青、缪希仁、陈静、卢燕臻、许勇、江灏

展开 >

福州大学电力系统与装置产业研究院,福建省 福州市 350108

福建福清核电有限公司,福建省福清市 350300

核电厂 自给能中子探测器 故障检测 故障隔离 图卷积网络 门控循环单元

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(23)