首页|基于分级自适应倾斜决策树的电力系统主导失稳模式辨识方法研究

基于分级自适应倾斜决策树的电力系统主导失稳模式辨识方法研究

扫码查看
新型电力系统发展背景下,故障后暂态功角失稳与暂态电压失稳相互影响、交互作用,现有基于人工智能的主导失稳模式辨识研究尚处于起步阶段,且存在"黑箱"问题。为此,提出一种基于分级自适应倾斜决策树的主导失稳模式辨识新方法。采用滑窗轨迹簇特征构造法来捕获电气量时序响应信息,提升模型训练速度、泛化能力与鲁棒性。辨识模型构建上,使用融合支持向量机决策面的倾斜决策树分类模型建立主导失稳模式与特征量间的映射关系,以多维特征的非线性组合来增强传统决策树内部节点分支能力,提升辨识精度。方法第一阶段进行稳定性评估,并引入代价敏感机制降低失稳工况错判风险;第二阶段进行主导失稳模式辨识。此外,利用一种分级自适应策略来提高样本辨识速度,并进一步减少错判。所生成辨识规则由多项式表征,并能够挖掘多组合特征与主导失稳模式间的关联关系。暂态功角失稳-电压崩溃系统算例及万节点标准算例验证所提方法的有效性,为基于人工智能进行主导失稳模式辨识与分析提供一种新思路。
Dominant Instability Mode Identification Method of Power System Based on Hierarchical-self-adaptive Oblique Decision Tree
Under the background of the development of new type power systems,post-fault transient power angle instability and transient voltage instability interact with each other.The current study on identifying dominant instability modes using artificial intelligence faces a"black box"issue,as this field is still in its nascent stages of development.Therefore,a new method of dominant instability mode identification based on hierarchical-self-adaptive oblique decision tree is proposed.The feature construction method of sliding window trajectory cluster is used to capture the time series response information of electrical quantities,which improves the training speed,generalization ability and robustness of the model.In the construction of the identification model,the oblique decision tree classification model fused with the decision surface of the support vector machine is used to establish the mapping relationship between the dominant instability mode and the feature quantity,and the nonlinear combination of multi-dimensional features is used to enhance the branch ability of the internal nodes of the traditional decision tree and improve the identification accuracy.In the first stage of the method,the stability evaluation is carried out,and the cost-sensitive mechanism is introduced to reduce the risk of misjudgment of the instability condition.In the second stage,the dominant instability mode is then identified.In addition,a hierarchical-self-adaptive strategy is used to improve the speed of sample identification and further reduce misjudgment.The generated identification rules are characterized by polynomials,which can mine the correlation between multi-combination features and dominant instability modes.The effectiveness of the proposed method is verified by the transient power angle instability-voltage collapse system example and the ten-thousand-node standard example,which provides a new idea for the identification and analysis of the dominant instability mode based on artificial intelligence.

dominant instability modesliding window trajectory cluster featureoblique decision treehierarchical-self-adaptationidentification rule

甄永赞、阮程、胡永强、李宗翰、袁超

展开 >

新能源电力系统全国重点实验室(华北电力大学),北京市 昌平区 102206

电网安全全国重点实验室(中国电力科学研究院有限公司),北京市 海淀区 100192

主导失稳模式 滑窗轨迹簇特征 倾斜决策树 分级自适应 辨识规则

2024

中国电机工程学报
中国电机工程学会

中国电机工程学报

CSTPCD北大核心
影响因子:2.712
ISSN:0258-8013
年,卷(期):2024.44(24)