首页|我国不同地区钢材大气腐蚀预测算法评估与筛选

我国不同地区钢材大气腐蚀预测算法评估与筛选

扫码查看
针对我国不同地区的各类钢材,提出了一种基于机器学习算法的钢材大气腐蚀深度预测方法,并对不同算法的适用程度进行评估.首先,收集了我国10个大气暴露站的腐蚀检测数据、环境特征和材料特征,采用规范公式与6种机器学习算法预测钢材腐蚀深度,分析预测误差,对比环境腐蚀性等级评估的准确率,筛选适用于我国钢材大气腐蚀的预测模型.进一步分析材料与环境特征敏感性,揭示影响钢材大气腐蚀的主要材料与环境因素.结果表明,相比于规范公式,应用随机森林(RF)和长短期记忆循环神经网络(LSTM)算法的预测模型精度大幅提升;除了规范公式中的温湿度、硫酸盐和氯盐沉积率外,有关雨水酸碱性和雨水腐蚀性离子浓度的特征对钢材腐蚀行为有较大影响,应予以考虑.
Evaluation and Screening of Atmospheric Corrosion Prediction Algorithms of Steels in Different Regions of China
Atmospheric corrosion of steels is a universal problem.Improving the prediction accuracy of atmospheric corrosion rate of steels in China is of great significance for setting corrosion margin,pre-venting corrosion failure and reducing the corrosion induced economic loss.For different type of steels in different regions of China,a prediction method of corrosion depth for steels based on machine learning al-gorithm was proposed,including data acquisition and processing,model training and testing,model eval-uation and screening,feature ranking and other steps.The applicability of different algorithms was evalu-ated and the optimal algorithm of the corrosion prediction for steels was selected.Firstly,the corrosion da-ta,environmental-and materials-features of 10 atmospheric exposure stations in China were collected.The corrosion depth of steels was predicted by using standard formulas and 6 machine learning algo-rithms.The grades of environmental corrosivity of atmospheric exposure stations were evaluated.Then,the prediction errors were analyzed,the accuracy of environmental corrosivity grade assessment was compared,and the prediction model suitable for steel corrosion was screened.Moreover,the sensitivity of materials-and environmental-features were analyzed,revealing the main factors of environments and materials affecting the atmospheric corrosion of steels.The results show that compared with the standard formula,the accuracy of the prediction models is greatly improved by RF and LSTM algorithms.In addi-tion to the terms such as temperature,humidity,sulfate-and chloride-deposition rates mentioned in stan-dard formulas,the acidity,alkalinity and rainwater corrosive ion concentration of rainwaters have a great impact on the corrosion of steels,which should be considered.

steelatmospheric exposure stationsmachine learningfeature sensitivityenvironmen-tal corrosive grade

沈坚、吴柯娴、何晓宇、方兴龙

展开 >

浙江数智交院科技股份有限公司 杭州 310006

综合交通运输理论交通运输行业重点实验室 杭州 310006

浙江大学结构工程研究所 杭州 310058

浙江海港内河港口发展有限公司 杭州 310005

展开 >

钢材 大气暴露站 机器学习 特征敏感性 环境腐蚀性等级

浙江省交通运输厅科技计划项目浙江省交通运输厅科技计划项目交通运输行业重点科技项目

202000320230072020-GT-010

2024

中国腐蚀与防护学报
中国腐蚀与防护学会 中国科学院金属研究所

中国腐蚀与防护学报

CSTPCD北大核心
影响因子:0.819
ISSN:1005-4537
年,卷(期):2024.44(4)
  • 3