首页|妊娠期糖尿病发病的影响因素及Lasso-Nomogram预测模型的效能分析

妊娠期糖尿病发病的影响因素及Lasso-Nomogram预测模型的效能分析

扫码查看
目的 分析妊娠期糖尿病(GDM)的发病因素,并构建Lasso-Nomogram预测模型。方法 纳入2020年6月-2023年1月在杭州市妇产科医院产检的150例孕妇,根据GDM发病情况分为发生组(30例)和未发生组(120例),采用logis-tic回归分析法分析GDM发病的独立危险因素,将获得的独立影响因素纳入Lasso-Nomogram预测模型,采用R软件中C指数、受试者工作特征(ROC)曲线及校准曲线评价Lasso-Nomogram预测模型的效能。结果 logistic回归分析显示:年龄≥35岁、孕前体质量指数(BMI)≥24kg/m2、喜甜食、有糖尿病家族史及孕前有多囊卵巢综合征(PCOS)均是GDM发生的独立危险因素(OR=12。091,59。000,38。000,37。667,12。346,均P<0。05)。ROC 曲线显示:年龄≥35 岁、孕前 BMI≥24 kg/m2、喜甜食、有糖尿病家族史、孕前有PCOS对GDM有很好的预测价值。基于以上影响因素建立Lasso-Nomogram预测模型,校准曲线C指数为0。830,说明该Lasso-Nomogram预测模型区分度较好,ROC曲线建模组和验证组的曲线下面积(AUC)分别为0。825和0。923,说明该Lasso-Nomogram模型具有良好的预测效能。结论 基于GDM发病的独立影响因素构建的Lasso-Nomogram预测模型能直观预测GDM的发病概率。
Influencing factors of occurrence of gestational diabetes mellitus and effectiveness analysis of Lasso-Nomogram prediction model
Objective To analyze the pathogenic factors of gestational diabetes mellitus(GDM),and build a Lasso-Nomogram predic-tion model.Methods A total of 150 pregnant women were selected from Hangzhou Women's Hospital from June 2020 to January 2023.Ac-cording to the occurrence of GDM,the patients were divided into incidence group(30 cases)and non-incidence group(120 cases).Lo-gistic regression model was used to analyze the independent risk factors of occurrence of GDM,and the obtained independent risk factors were included in Lasso-Nomogram prediction model.The efficacy of Lasso-Nomogram prediction model was evaluated by C index,receiver opera-tor characteristic(ROC)curve,and calibration curve in R software.Results Logistic regression analysis showed that aged or more than 35 years old,body mass index(BMI)24 kg/m2 or above before pregnancy,preference for sweets,family history of diabetes,and polycystic ovary syndrome(PCOS)before pregnancy were all independent risk factors for GDM(OR=12.091,59.000,38.000,37.667,12.346,all P<0.05).ROC curve showed that the predictive value of aged or more than 35 years old,BMI 24 kg/m2 or above before pregnancy,pref-erence for sweets,family history of diabetes,and PCOS before pregnancy for GDM was high.Lasso-Nomogram prediction model was estab-lished based on the influencing factors,and C index of calibration curve was 0.830,which showed that Lasso-Nomogram prediction model had good discrimination,and the values of area under ROC curve in modeling group and verification group were 0.825 and 0.923,respec-tively,which showed that Lasso-Nomogram model had good prediction energy efficiency.Conclusion Lasso-Nomogram prediction model based on the independent influencing factors of GDM can directly predict the incidence probability of GDM.

Gestational diabetes mellitusInfluencing factorLasso-Nomogram prediction model

陈婷、孙杨芳

展开 >

浙江中医药大学,浙江 杭州 310000

杭州市妇产科医院(杭州市妇幼保健院),浙江 杭州 310000

妊娠期糖尿病 影响因素 Lasso-Nomogram预测模型

2025

中国妇幼保健
中华预防医学会 吉林省医学期刊社

中国妇幼保健

影响因子:1.486
ISSN:1001-4411
年,卷(期):2025.40(1)