首页|1980-2023年江苏省疟疾病例时间序列模型预测分析

1980-2023年江苏省疟疾病例时间序列模型预测分析

扫码查看
目的 分析1980-2023年江苏省疟疾报告病例数量变化趋势,通过不同类型的时间序列模型预测病例数。方法 收集公共卫生科学数据中心、江苏省卫生健康委员会1980-2023年江苏省月度疟疾报告病例数据,分析疟疾病例数变化情况。通过参数判定,分别筛选出最优的自回归移动平均(ARIMA)模型和指数平滑模型,通过相对误差的绝对者比较两者预测效果。结果 1980年后江苏省疟疾报告病例数呈下降趋势,年报告病例数峰值由1980年296 844例下降到2021年、2022年37例,月病例数峰值由1980年9月77 198例下降到部分月份(2020年7月、2021年10月、2022年2月、2022年3月)无报告病例;2012年前病例多集中于每年6-10月。1989年各月份指数平滑模型预测值相对误差的绝对值小于ARIMA模型,指数平滑模型预测效果较好;1999、2011年各月份ARIMA模型预测值相对误差绝对值小于指数平滑模型,ARIMA模型预测效果较好;2023年1、9、11月ARIMA模型预测相对误差绝对值小于指数平滑模型,2-8月、10月、12月指数平滑模型预测值相对误差绝对值小于ARIMA模型。结论 时间序列模型有助于开展疟疾疫情的预警监测,要采取综合性措施才能做好消除本土疟疾后的疫情防控工作。
Analysis of prediction for malaria cases by time series fitting in Jiangsu province,1980-2023
Objective To investigate the quantitative changes of malaria cases in Jiangsu province from 1980 to 2023,to predict malaria cases by time series fitting.Methods The monthly bulletins about malaria cases from Public Health Science Data Center and Jiangsu Commission of Health were retrieved.The quantitative changes of malaria cases were investigated.The suitable autoregressive integrated moving average(ARIMA)model and exponential smoothing model were sifted with criterion of parameters.The prediction effects were compared by relative errors.Results Since 1980,there was a significant decreasing tendency in malaria cases in Jiangsu province.The yearly cases peak was 296 844 in 1980,whereas the minimum yearly value was 37 in 2021 and 2022.The monthly cases peak was 77 198 in September 1980,whereas there was no reported case in July 2020,October 2021,February and March of 2022.Most of the malaria cases were concentrated from June to October before 2012.The absolute values of relative errors of monthly predicted values in 1989 with the exponential smoothing models were less than the ARIMA models,hence the prediction effects were better for the exponential smoothing models.The absolute values of relative errors of monthly predicted values in 1999 and 2011 with the ARIMA models were less than the exponential smoothing models,hence the prediction effects were better for the ARIMA models.The absolute values of relative errors of monthly predicted values in January,September and November of 2023 with the ARIMA models were less than the exponential smoothing models,whereas the absolute values of relative errors of monthly predicted values in February to August,October and December of 2023 with the exponential smoothing models were less than the ARIMA models.Conclusion The time series models were helpful in surveillance and early warning for malaria The comprehensive measures should be carried out to prevent and control of malaria after elimination of the indigenous malaria cases.

MalariaCaseTime seriesAutoregressive integrated moving average modelExponential smoothing model

胡学锋、郭晔、冯米佳、邱文毅、孙涛、符丽媛、周鹏程、吴海磊

展开 >

江苏国际旅行卫生保健中心(南京海关口岸门诊部),江苏南京 210019

常州海关

南京海关

疟疾 病例 时间序列 自回归移动平均模型 指数平滑模型

2024

中国国境卫生检疫杂志
中国质检报刊社

中国国境卫生检疫杂志

CSTPCD
影响因子:0.415
ISSN:1004-9770
年,卷(期):2024.47(6)