首页|基于时间序列的深度学习光伏发电模型研究

基于时间序列的深度学习光伏发电模型研究

扫码查看
文章聚焦于基于时间序列的深度学习在光伏发电模型中的应用.通过收集4个不同光伏基站的实时功率数据和气象信息,构建一个集成GRU(门控循环单元)网络的预测模型.模型旨在处理时间序列数据,准确预测光伏发电量.探讨了数据集规模、模型结构对预测准确度的影响,证实深度学习在光伏发电预测中的潜力和有效性.实验结果显示,该模型在训练和测试集上表现出色,尤其是在泛化能力上超越传统方法.
Research on time series based deep learning photovoltaic power generation model
The research focuses on the application of time series based deep learning in photovoltaic power generation models.Build an integrated GRU(Gated Recurrent Unit)network prediction model by collecting real-time power data and meteorological information from four different photovoltaic base stations.The model aims to process time series data and accurately predict photovoltaic power generation.The study also explores the impact of dataset size and model structure on prediction accuracy,confirming the potential and effectiveness of deep learning in photovoltaic power generation prediction.The experimental results show that the model performs well on both training and testing sets,especially surpassing traditional methods in terms of generalization ability.

time seriesdeep learningphotovoltaic power generation model

张华强

展开 >

广东粤水电勘测设计有限公司,广东 佛山 528041

时间序列 深度学习 光伏发电模型

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(6)
  • 5