首页|基于深度学习的环保气体小泄漏检测技术

基于深度学习的环保气体小泄漏检测技术

扫码查看
环保气体的泄漏检测一直是行业中一个具有挑战性的问题,文章利用深度学习来识别泄漏。为了收集泄漏的声学信号,建立了一个可调压力的气体管道系统来控制气体。将采集到的声学信号转换到频域进行预处理。与传统的两步检测技术(特征提取和分类)不同,建立了一个具有多个卷积层和池化层的基于CNN的模型。在该模型中卷积层和池化层旨在学习变换后的声学信号的表示,而最后一层中的Softmax层被开发以进一步识别来自前层的表示。实验证明了该模型在真实世界数据中的有效性。与传统的CNN模型相比,该模型耗时少、效率高。
Small leakage detection technology of environmental protection gas based on deep learning
Leakage detection of environmentally friendly gases has always been a challenging issue in the industry.This technology utilizes deep learning to identify leaks.In order to collect acoustic signals of leaks,an adjustable pressure gas pipeline system was established to control the gas.Convert the collected acoustic signals into the frequency domain for preprocessing.Unlike traditional two-step detection techniques(feature extraction and classification),a CNN based model with multiple convolutional and pooling layers was established.In this model,the convolutional layer and pooling layer aim to learn the representation of the transformed acoustic signal,while the Softmax layer in the final layer is developed to further identify the representation from the previous layer.The experiment has proven the effectiveness of this model in real-world data.Compared with traditional CNN models,this model takes less time and has higher efficiency.

convolutional neural networkenvironmentally friendly gasesleak detection

惠泽国、唐炳南

展开 >

丽江古城供电局,云南 丽江 674100

云南电网有限责任公司丽江供电局,云南 丽江 674100

卷积神经网络 环保气体 泄漏检测

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(9)
  • 7