首页|基于人工智能的水利水电设备状态监测与预测技术研究

基于人工智能的水利水电设备状态监测与预测技术研究

扫码查看
文章研究通过采用深度学习中的长短时记忆网络(LSTM)和支持向量机等先进算法,建立了高效的监测与预测系统。实验结果表明,所提出的方法在模型准确性和实时性方面取得了显著的进展,为水利水电行业提供可行的智能化解决方案。
Research on the condition monitoring and prediction technology of water conservancy and hydropower equipment based on artificial intelligence
This paper establishes an efficient monitoring and prediction system by adopting advanced algorithms in deep learning,such as long short-term memory(LSTM)and support vector machine(SVM).The experimental results show that the proposed method has made significant progress in model accuracy and real-time performance,providing feasible intelligent solutions for the water conservancy and hydropower industry.

artificial intelligencewater conservancy and hydropower equipmentstatus monitoring

汲晓飞

展开 >

莒南石莲子水利服务中心,山东 临沂 276600

人工智能 水利水电设备 状态监测

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(10)