首页|基于深度学习算法的煤矿机械设备智能巡检系统设计与实现

基于深度学习算法的煤矿机械设备智能巡检系统设计与实现

扫码查看
本文提出了一种基于深度学习算法的煤矿机械设备智能巡检系统,特别是利用双向长短期记忆(Bi-LSTM)网络来处理和分析设备运行状态。系统通过整合传感器数据采集、数据预处理、深度学习模型构建与优化等技术模块,实现了对煤矿机械设备故障的高效预测与准确检测。实验结果表明,与传统ARIMA模型和单向LSTM网络相比,Bi-LSTM网络在准确率和F1-score等关键性能指标上表现更佳,证实了本系统在煤矿机械设备智能巡检领域的有效性和优越性。
Design and implementation of intelligent inspection system for coal mine mechanical equipment based on deep learning algorithm
This article introduces an intelligent inspection system for coal mining machinery based on deep learning algorithms,with a focus on utilizing Bidirectional Long Short-Term Memory(Bi-LSTM)Networks to process and analyze the operational status of the equipment.The system integrates modules for sensor data collection,data preprocessing,and the construction and optimization of deep learning models,thereby achieving efficient prediction and accurate detection of faults in coal mining machinery.Experimental results indicate that the Bi-LSTM network surpasses traditional ARIMA models and unidirectional LSTM networks in crucial performance metrics such as accuracy and F1-score,thereby validating the effectiveness and superiority of this system in the realm of intelligent inspection for coal mining machinery.

deep learningcoal mining machineryintelligent inspectionBidirectional Long Short-Term Memory Networks

王连涛、蒲镇

展开 >

陕西长武亭南煤业有限责任公司,陕西 咸阳 713602

深度学习 煤矿机械设备 智能巡检 双向长短期记忆网络

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(11)