首页|基于光照自适应调节和模糊分类的人脸图像质量提升算法研究

基于光照自适应调节和模糊分类的人脸图像质量提升算法研究

Face image quality improvement algorithm based on adaptive adjustment of illumination and fuzzy classification

扫码查看
本文介绍人脸识别系统关键技术,综述不同光照下人脸识别技术研究.当前光照预处理方法包括基于小波变换处理、Retinex方法等,对比分析相同光照预处理方法在不同人脸测试库的性能差异.特定预处理方法对特定属性数据库才能达到理想识别效果.提出人脸光照自适应调节算法,建立模糊识别模型进行算法实验,提升非理想条件下人脸识别准确率,以挑选清晰的人脸图像提升移动场景人脸识别准确率.采用设计算法,人脸识别准确率达到 97.21%,具有推广价值.
In this paper,the key technologies of face recognition system are introduced,and the research of face recognition technology under different illumination is reviewed;the current illumination preprocessing methods include wavelet-based processing,Retinex method,etc.,and the performance differences of the same illumination preprocessing method in different face test libraries are compared and analyzed;the specific preprocessing method can achieve the ideal recognition effect for the specific attribute database.An adaptive adjustment algorithm for face illumination is proposed,and a fuzzy recognition model is established for algorithm experiments to improve the accuracy of face recognition under non-ideal conditions,so as to select clear face images to improve the accuracy of face recognition in moving scenes.The accuracy of face recognition reaches 97.21%by using the design algorithm,which is worth popularizing.

illumination adaptive adjustmentfuzzy classificationface image quality improvementalgorithm

王艳

展开 >

吉利学院,四川 成都 610000

光照自适应调节 模糊分类 人脸图像质量提升 算法

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(11)