首页|基于光照自适应调节和模糊分类的人脸图像质量提升算法研究

基于光照自适应调节和模糊分类的人脸图像质量提升算法研究

扫码查看
本文介绍人脸识别系统关键技术,综述不同光照下人脸识别技术研究。当前光照预处理方法包括基于小波变换处理、Retinex方法等,对比分析相同光照预处理方法在不同人脸测试库的性能差异。特定预处理方法对特定属性数据库才能达到理想识别效果。提出人脸光照自适应调节算法,建立模糊识别模型进行算法实验,提升非理想条件下人脸识别准确率,以挑选清晰的人脸图像提升移动场景人脸识别准确率。采用设计算法,人脸识别准确率达到 97。21%,具有推广价值。
Face image quality improvement algorithm based on adaptive adjustment of illumination and fuzzy classification
In this paper,the key technologies of face recognition system are introduced,and the research of face recognition technology under different illumination is reviewed;the current illumination preprocessing methods include wavelet-based processing,Retinex method,etc.,and the performance differences of the same illumination preprocessing method in different face test libraries are compared and analyzed;the specific preprocessing method can achieve the ideal recognition effect for the specific attribute database.An adaptive adjustment algorithm for face illumination is proposed,and a fuzzy recognition model is established for algorithm experiments to improve the accuracy of face recognition under non-ideal conditions,so as to select clear face images to improve the accuracy of face recognition in moving scenes.The accuracy of face recognition reaches 97.21%by using the design algorithm,which is worth popularizing.

illumination adaptive adjustmentfuzzy classificationface image quality improvementalgorithm

王艳

展开 >

吉利学院,四川 成都 610000

光照自适应调节 模糊分类 人脸图像质量提升 算法

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(11)