首页|基于优化深度神经网络的低照度图像增强技术

基于优化深度神经网络的低照度图像增强技术

扫码查看
全球气候的问题造成许多图像的质量较低,针对这一问题,本文提出一种基于优化深度神经网络的低照度图像增强模型。该模型利用最小二乘生成对抗网络学习低光照和正常光照图像之间的映射,并在U-Net中引入注意机制以增强低光照图像中的暗部区域,使图像的曝光度能够达到最佳状态。通过设计实验从主观和客观两种角度证明该模型能够产生令人满意的视觉效果和图像质量。
Low-light image enhancement based on optimized depth neural network
In order to solve the problem of low quality image caused by global climate,a low-illumination image enhancement model based on optimized depth neural network is proposed in this paper.The model utilizes the least squares generation antagonism network to learn the mapping between low-light and normal-light images,and introduces the attention mechanism in U-Net to enhance the dark regions in low-light images.It is proved that the model can produce satisfactory visual effect and image quality from subjective and objective angles through experiments.

low-light imagedata enhancementgenerating antagonism networks

籍凡姝

展开 >

商洛学院电子信息与电气工程学院,陕西 商洛 726000

低照度图像 数据增强 生成对抗网络

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(13)