首页|基于智能化模型的核心网异常检测技术研究

基于智能化模型的核心网异常检测技术研究

扫码查看
核心网KPI异常检测对于保障网络稳定运行至关重要。为促进网络运维向智能化方向发展,文章提出了一种基于智能化模型的核心网KPI异常检测方法。该方法首先利用单层决策树对KPI数据进行处理,将KPI数据划分为边界型异常和非边界型异常两类。文章重点阐述边界型KPI异常检测,针对边界型异常KPI数据,使用单层决策树、朴素贝叶斯和K近邻分类器三种模型做出评估,使用VOTING方法集成三个模型的评估结果,进一步提高异常检测的准确率和全面性。实验结果表明,该方法在核心网KPI异常检测中取得了良好的性能表现。
Research on intelligent model-based core network anomaly detection technology
The detection of core network KPI anomalies is crucial for ensuring the stable operation of the network.To promote the development of intelligent network operations and maintenance,this paper proposes a core network KPI anomaly detection method based on an intelligent model.This method first uses a single-layer decision tree to process KPI data,dividing the data into two categories:boundary-type anomalies and non-boundary-type anomalies.Next,for the boundary-type anomaly KPI data,three models—single-layer decision tree,Naive Bayes,and K-Nearest Neighbors(KNN)—are used for evaluation.The results of these three models are then integrated using the VOTING method to further improve the accuracy and comprehensiveness of anomaly detection.Experimental results demonstrate that this method achieves good performance in detecting core network KPI anomalies.

core networkintelligent modelKPI anomaly detection

张西安

展开 >

利德世普科技有限公司,河南 郑州 450003

核心网 智能化模型 KPI异常检测

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(18)