首页|基于循环神经网络的城域网流量预测技术研究

基于循环神经网络的城域网流量预测技术研究

扫码查看
城域网流量预测对于城域网规划和资源分配至关重要。文章构建了基于循环神经网络(RNN)的城域网流量预测模型,以科学准确地预测城域网流量。首先,通过对影响城域网流量的关键因素进行分析,确定了宽带用户的总数、网络的并发使用比例、移动手机在高峰时段的平均流量、网民的上网时长、城域网流量的最高峰值及繁忙时段的平均带宽作为RNN模型的特征变量。然后,利用RNN的记忆功能,将历史流量数据作为输入,建立了具有无限记忆深度的流量预测模型。实验结果表明,该模型能够准确预测城域网流量的变化趋势,为城域网规划和资源分配提供重要参考。
Research on metropolitan area network traffic prediction technology based on recurrent neural network
The prediction of Metropolitan Area Network (MAN) traffic is crucial for MAN planning and resource allocation.This study constructs a MAN traffic prediction model based on Recurrent Neural Networks (RNN) to accurately predict MAN traffic.Firstly,by analyzing the factors influencing MAN traffic,the study determines broadband user numbers,network concurrency ratio,average busy-hour traffic of mobile phones,internet usage time of netizens,MAN traffic peak value,and average bandwidth during busy hours as the feature variables of the RNN model.Then,utilizing the memory function of RNN,historical traffic data is used as input to establish a traffic prediction model with infinite memory depth.Experimental results demonstrate that the model can accurately predict the trend of MAN traffic,providing valuable insights for MAN planning and resource allocation.

Metropolitan Area Networktraffic predictionRecurrent Neural Network

张西安

展开 >

利德世普科技有限公司,河南 郑州 450003

城域网 流量预测 循环神经网络

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(21)