首页|基于VMD-BiGRU-MHA的变压器表面温度预测方法研究

基于VMD-BiGRU-MHA的变压器表面温度预测方法研究

扫码查看
为提高变压器表面温度预测精度,提出一种基于变分模态分解(Variational Modal Decomposition,VMD)、双向门控循环单元(Bi-Directional Gated Recurrent Unit,BiGRU)和多头注意力机制(Multi-Head Attention,MHA)的预测方法.在VMD-BiGRU-MHA模型中,首先利用VMD将原始数据分解成若干个子序列,得到较稳定的各个分量,然后输入BiGRU中进行训练,最后引入MHA对变压器表面温度的时间序列长距离数据特征进行挖掘,从而提高预测精度.结果表明,与BiGRU和VMD-BiGRU相比,文章所提模型预测误差更小、预测速度更快.
Transformer surface temperature based on VMD-BiGRU-MHA prediction method research
In order to improve the accuracy of transformer surface temperature prediction,a prediction method based on Variational Modal Decomposition,Bi-Directional Gated Recurrent Unit and Multi-Head Attention is proposed.In order to increase prediction accuracy,the VMD-BiGRU-MHA model first uses VMD to break down the original data into multiple subsequences and produce more stable individual components.These subsequences are then fed into BiGRU for training.Lastly,MHA is added to mine the time-series long-distance data features of the transformer surface temperature.Comparing the model suggested in this research to BiGRU and VMD-BiGRU,the findings demonstrate that it has a smaller prediction error and a faster prediction speed.

transformer surface temperatureVariational Modal DecompositionBi-Directional Gated Recurrent UnitMulti-Head Attention

米立

展开 >

国网宜昌供电公司,湖北 宜昌 443000

变压器表面温度 变分模态分解 双向门控循环单元 多头注意力机制

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(21)