首页|基于人工智能的变电站设备状态监测与故障诊断技术研究

基于人工智能的变电站设备状态监测与故障诊断技术研究

扫码查看
文章介绍了一种基于人工智能的变电站设备状态监测与故障诊断技术。利用机器学习和深度学习算法,如支持向量机(SVM)、残差卷积神经网络(ResNet)和长短时记忆网络(LSTM),解决变电站设备监测中的实时性和准确性问题。通过实验验证,展示了这些算法在提高故障检测准确性和实时监测能力上的优势。展示了人工智能技术在电力系统中的应用潜力,为变电站的智能化监测与维护提供了理论与实践基础。
Research on status monitoring and fault diagnosis technology of substation equipment based on artificial intelligence
This paper presents an artificial intelligence-based approach for monitoring and diagnosing equipment faults in substations. The study focuses on utilizing machine learning and deep learning algorithms such as Support Vector Machine (SVM),Residual Convolutional Neural Network (ResNet),and Long Short-Term Memory network (LSTM) to address the challenges of timeliness and accuracy in substation equipment monitoring. Experimental validations demonstrate the advantages of these algorithms in enhancing fault detection accuracy and real-time monitoring capabilities. This research not only showcases the potential applications of artificial intelligence in power systems but also provides a theoretical and practical foundation for the intelligent monitoring and maintenance of substations.

artificial intelligencefault diagnosisdeep learning algorithmsupport vector machine

赵俊石、卢波、齐光豪、任创、申武龙

展开 >

国网新疆哈密供电公司,新疆 哈密 839000

人工智能 故障诊断 深度学习算法 支持向量机

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(22)