首页|基于车联网的高速公路行车风险感知方法研究

基于车联网的高速公路行车风险感知方法研究

扫码查看
文章提出一种基于混合粗糙集和遗传算法优化的支持向量机(SVM)模型,用于车联网环境下的高速公路行车风险感知。通过对采集的BSM数据进行预处理和特征提取,并利用遗传算法优化SVM参数,构建了一个高效的行车状态判别模型。实车测试结果显示,该模型在检测急加速、急刹车、换道和颠簸等潜在风险行车状态时具有较高的准确性,分类正确率达94。4444%,优于传统方法,验证了其在实际应用中的有效性和鲁棒性。
Research on highway driving risk perception based on vehicular ad hoc networks
This paper proposes a method for highway driving risk perception based on a hybrid rough set and genetic algorithm optimized support vector machine (SVM) model in vehicular ad hoc network environments. By preprocessing and feature extraction of collected basic safety message (BSM) data,and optimizing SVM parameters using a genetic algorithm,an efficient driving state discrimination model is constructed. Real-world testing results show that the model has high accuracy in detecting potential risky driving behaviors such as abrupt acceleration,abrupt braking,lane changing,and bumpiness,with a classification accuracy of 94.4444%,surpassing traditional methods,verifying its effectiveness and robustness in practical applications.

vehicular ad hoc networkshighwaydriving risk perception

王靖飞

展开 >

江苏京沪高速公路有限公司,江苏 南京 210000

车联网 高速公路 行车风险感知

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(22)