首页|基于深度学习的油浸式变压器故障诊断依据及特征确定

基于深度学习的油浸式变压器故障诊断依据及特征确定

扫码查看
文章介绍了一种基于深度森林模型的油浸式变压器故障诊断方法。该方法通过分析变压器油中溶解气体的数据,利用深度森林模型的多级处理能力,从高维数据中精确提取故障特征,以识别和预测潜在故障。对比分析表明,该模型相较于传统的三比值法和BP神经网络法,在故障诊断的准确性和可靠性上均有显著提升。研究结果不仅验证了深度森林模型在处理复杂变压器数据上的有效性,也为变压器的维护管理提供了技术支持,增强了电力系统的稳定性和安全性。
Fault diagnosis basis and characteristic determination of oil-immersed transformer based on deep learning
This paper introduces a fault diagnosis method for oil-immersed transformers based on the deep forest model. This method analyzes the data of dissolved gases in transformer oil and utilizes the multi-level processing capabilities of the deep forest model to accurately extract fault features from high-dimensional data to identify and predict potential faults. Comparative analysis shows that compared with the traditional three-ratio method and BP neural network,this model has significantly improved the accuracy and reliability of fault diagnosis. The research results not only verify the effectiveness of the deep forest model in processing complex transformer data,but also provide technical support for transformer maintenance and management,enhancing the stability and security of the power system.

oil-immersed transformerfault diagnosisdeep forest modelpower system security

薛李俐

展开 >

国网运城供电公司,山西 运城 044000

油浸式变压器 故障诊断 深度森林模型 电力系统安全

2024

中国高新科技
中华预防医学会,国家食品安全风险评估中心

中国高新科技

ISSN:
年,卷(期):2024.(22)