首页|基于SEER数据库构建骨肉瘤患者预后列线图模型

基于SEER数据库构建骨肉瘤患者预后列线图模型

扫码查看
目的 旨在构建列线图模型预测骨肉瘤患者的总生存期(OS).方法 从美国国家癌症研究所的监测、流行病学和最终结果(SEER)数据库中收集 2010 至 2015 年诊断的骨肉瘤患者,以 7∶3 比例随机分成训练集和验证集,用于模型构建和验证.在训练集,使用单因素及多因素 Cox 回归分析筛选影响患者预后的变量,然后使用这些变量构建列线图预后模型;在训练集和验证集中使用 C 指数、受试者工作特征曲线(ROC 曲线)和校准曲线对列线图的效能进行验证.结果 共有 872 例纳入研究,单因素及多因素 Cox 回归分析显示,年龄、性别、肿瘤部位、病理分级、T 分期、M 分期和手术是骨肉瘤患者预后的独立影响因素(P<0.05).基于这些变量构建列线图.训练集和验证集的 C 指数和 ROC 曲线下面积表明,本研究的列线图模型具有很强的预测能力.此外,训练集和验证集的校准曲线表明预测结果和观测结果之间具有高度相关性.结论 本研究确定了与骨肉瘤生存率相关的临床变量,然后建立了一个列线图预测骨肉瘤患者的 1 年、3 年和 5 年生存率.该模型可以帮助临床医师制订治疗和随访策略,以更有效地治疗骨肉瘤患者.
A prognostic nomogram model of osteosarcoma based on SEER database
Objective To construct a nomogram model to predict overall survival(OS)of patients with osteosarcoma.Methods Osteosarcoma patients diagnosed between 2010 and 2015 were collected from the National Cancer Institute's Surveillance,Epidemiology,and End Results(SEER)database,and were randomly divided into training and validation sets in a 7:3 ratio for model construction and validation.In the training set,univariate and multifactor Cox regression analyses were used to screen variables that affected patient prognosis,and then the nomogram prediction model was constructed using these variables.The efficiency of the nomogram was verified using the C-index,receiver operating characteristic curve(ROC curve),and calibration curve in the training set and validation set.Results A total of 872 patients were included in the study.Univariate and multivariate Cox regression analyses showed that age,sex,tumor site,pathological grade,T stage,M stage and surgery were independent factors influencing the prognosis of patients with osteosarcoma(P<0.05).A nomogram was built based on these variables.The C index and the areas under ROC curve of the training set and validation set showed that the nomogram model in this study had strong predictive ability.In addition,the calibration curves of the training and validation sets showed a high correlation between the predicted and observed results.Conclusions This study identifies clinical variables associated with osteosarcoma survival and then establishes a nomogram to predict 1-,3-,and 5-year overall survival in patients with osteosarcoma.The model could help clinicians develop treatment and follow-up strategies for more effective treatment of osteosarcoma.

OsteosarcomaNomogramsPrognosis

欧阳飞、陈瑜、石磊

展开 >

710032 西安,中国人民解放军空军军医大学第一附属医院骨科

骨肉瘤 列线图 预后

2024

中国骨与关节杂志
中国医疗保健国际交流促进会,北京中科康辰骨关节伤病研究所

中国骨与关节杂志

CSTPCD
影响因子:0.665
ISSN:2095-252X
年,卷(期):2024.13(5)
  • 44