首页|基于BayesianOpt-XGBoost的煤电机组碳排放因子预测

基于BayesianOpt-XGBoost的煤电机组碳排放因子预测

扫码查看
以贝叶斯参数优化的XGBoost算法为基础,基于机组特征和煤炭特性建立BayesianOpt-XGBoost预测模型,其发电、供热碳排放因子预测的相关系数R2分别为0。91和0。87,绝对误差百分比为2。51%和2。91%。进一步,通过特征标准化方法减少对煤炭特性的依赖,模型预测R2分别为0。79和0。77,绝对误差百分比为3。94%和2。75%,精度仍可得到保障。基于该模型分析全国各省区煤电机组碳排放因子并与公布数据进行比较,证明了该模型的有效性。对机组预测结果的分析表明对现存的低容量机组进行改造、对新建造电机组采用大容量高参数可以减少碳排放强度。
Prediction of coal-fired power units carbon emission factor based on BayesianOpt-XGBoost
A Bayesian-Opt-XGBoost model was established on the basis of the features of power generation units and coals,in which the parameters were optimized with Bayesian.The prediction of the carbon emission factors of power and heat generation of coal-fired power plants had coefficients of(R2)of 0.91 and 0.87,respectively,the corresponding mean absolute errors are 2.51%and 2.91%.Normalization methods were used to get rid of the dependence on coal's features,the corresponding R2 values were 0.79 and 0.77 respectively,and the mean absolute errors were 3.94%and 2.75%,the accuracy can still be acceptable.With the model,the carbon emission factors of coal power units in different provinces of China were estimated and compared with the published data,which proved the valid of this model.The analysis of the above estimated results shown that the carbon emission intensity of coal-fired power industry can be reduced by reforming the existing low-capacity units and building large capacity and high parameters units for newly plants.

carbon accountingcoal-fired power units carbon emission factors predictionBayesian optimizationXGBoostfeature normalization

赵敬皓、王娜娜、蒋嘉铭、田亚峻

展开 >

中国科学院青岛生物能源与过程研究所,泛能源大数据与战略研究中心,山东青岛 266101

山东能源研究院,山东青岛 266101

青岛新能源山东省实验室,山东青岛 266101

青岛科技大学信息科学技术学院,山东青岛 266061

展开 >

碳核算:煤电碳排放因子预测 贝叶斯参数优化 XGBoost 特征标准化

中国工程院院地合作项目

2022sx4

2024

中国环境科学
中国环境科学学会

中国环境科学

CSTPCDCHSSCD北大核心
影响因子:2.174
ISSN:1000-6923
年,卷(期):2024.44(1)
  • 27