中国环境科学2024,Vol.44Issue(3) :1376-1385.

基于自适应多保真度Co-Kriging代理模型的地下水污染源反演识别

Identification of groundwater pollution sources based on self-adaption Co-Kriging multi-fidelity surrogate model

安永凯 张岩祥 闫雪嫚
中国环境科学2024,Vol.44Issue(3) :1376-1385.

基于自适应多保真度Co-Kriging代理模型的地下水污染源反演识别

Identification of groundwater pollution sources based on self-adaption Co-Kriging multi-fidelity surrogate model

安永凯 1张岩祥 2闫雪嫚3
扫码查看

作者信息

  • 1. 长安大学水利与环境学院,陕西 西安 710054;长安大学旱区地下水文与生态效应教育部重点实验室,陕西 西安 710054
  • 2. 中国电建集团西北勘测设计研究院有限公司,陕西 西安 710065
  • 3. 西北大学城市与环境学院,陕西 西安 710127
  • 折叠

摘要

为高效率高精度地进行地下水污染源反演识别,综合运用高保真度和低保真度地下水溶质运移数值模拟模型,研究应用集成差分进化算法的Co-Kriging 方法建立模拟模型的多保真度代理模型;在此基础上,探索应用马尔科夫链蒙特卡洛(MCMC)-DREAM(D)算法,并采用自适应更新多保真度代理模型策略进行地下水污染源反演识别.为验证上述方法的有效性和可行性,开展了数值算例研究.结果表明:相比仅基于高保真度模型输入-输出样本构建的Kriging代理模型,联合运用高保真度和低保真度模型输入-输出样本构建的Co-Kriging代理模型对模拟模型的逼近精度更高;耦合多保真度Co-Kriging代理模型和MCMC-DREAM(D)算法能够得到较高精度的污染源反演结果,且能够大幅度减小计算负荷;同时,采用自适应更新多保真度代理模型策略能够进一步提高污染源反演识别精度.

Abstract

To identify groundwater pollution sources efficiently and accurately,the Co-Kriging method integrating Differential evolution was used to establish a multi-fidelity surrogate model based on comprehensive application of high fidelity and low fidelity numerical simulation models for solute transport.On this basis,the Markov chain Monte Carlo(MCMC)-DREAM(D)algorithm and the adaptive updating multi fidelity surrogate model strategy were applied to identify groundwater pollution sources.To verify the effectiveness and feasibility of the above methods,this study conducted the numerical case study.The results showed that compared with the Kriging surrogate model based only on the input-output samples of the high fidelity model,the Co-Kriging surrogate model based on the joint use of input-output samples of the high fidelity and low fidelity model has higher approximation accuracy to the simulation model.The joint application of coupled multi fidelity Co-Kriging surrogate model and MCMC-DREAM(D)algorithm can not only obtain accurate identification results,but also significantly reduce the calculation load.At the same time,the adaptive updating multi fidelity surrogate model strategy can further improve the identification accuracy for groundwater pollution sources.

关键词

地下水污染源/多保真度代理模型/Co-Kriging方法/DREAM(D)算法/自适应

Key words

groundwater pollution sources/multi-fidelity proxy model/Co-Kriging method/DREAM(D)algorithm/self-adaption

引用本文复制引用

基金项目

国家自然科学基金资助项目(42102287)

中国博士后基金项目(2020M683399)

陕西省自然科学基础研究计划(2023-JC-QN-0290)

出版年

2024
中国环境科学
中国环境科学学会

中国环境科学

CSTPCDCHSSCD北大核心
影响因子:2.174
ISSN:1000-6923
参考文献量32
段落导航相关论文