首页|生物电化学厌氧消化的应用现状与研究进展

生物电化学厌氧消化的应用现状与研究进展

扫码查看
调研了近年来报道的生物电化学厌氧消化经典案例,梳理了该系统的构型及工作原理;讨论了其解抑增效潜能及机理;分析了外加电压、电极材料及布置间距等对系统强化效果的影响。目前,生物电化学厌氧消化系统通常可将厌氧消化甲烷产率产量提高0。15~8。6倍,提升沼气中的甲烷含量至原来的1。2~1。6倍。外加电极及电压造成的功能微生物富集和电子高效传递是系统性能强化的主要原 因。有鉴于此,电压和电极材料是系统效能的主要影响因素。该系统的规模化运行受到经济性制约,后期探索间歇供电、新能源供电、峰谷电等用电策略或形式;研发利于微生物富集但不易结垢的电极材料,创新电极组件摆放或嵌入型式等可能对该系统的工程化应用具有重要促进作用。
Application status and research progress of bioelectrochemical anaerobic digestion system
This review investigated typical research works related to bioelectrochemical anaerobic digestion(BEAD)in the field of biogas production.The configuration and operational principles of the BEAD system were firstly introduced;then,the efficacy and mechanisms of the BEAD system to mitigate process instability and simultaneously to enhance methane generation during anaerobic digestion were discussed;finally,the effects of variable parameters(including applied voltage,electrode material and the spacing of the electrodes)on improvement of the anaerobic digestion system were analyzed.Recent studies revealed that BEAD can enhance methane yield by a factor of 0.15~8.6,and simultaneously the methane content in biogas can also be increased by a factor of 1.2 to 1.6.This improvement can be attributed to the enrichment of functional microorganisms and enhanced electrons transfer efficiency due to adoption of BEAD system,implying that the voltage and electrode material of the BEAD system could be significant parameters on system performance.Nonetheless,full-scale application of the BEAD system encounters economic constraints.Future research work should focus on exploration of intermittent powering,powering by renewable energy,using peak-valley power as supply for the BEAD system.Meanwhile,developing new electrode materials that could enhance microbial enrichment while keep resistant to fouling,and innovating electrode assembly configurations or embedding patterns,are believed to significantly promote the practical applications of BEAD.

bioelectrochemical anaerobic digestiontechnology principalsystem effectivenessenhanced mechanisminfluencing factors

李蕾、罗思晗、叶文杰、孙惠、陈颜子云、王小铭、彭绪亚

展开 >

重庆大学,三峡库区生态环境教育部重点实验室,重庆 400045

生物电化学厌氧消化 技术原理 系统效能 强化机理 影响因素

重庆市技术创新与应用发展专项

CSTB2023T1AD-KPX0084

2024

中国环境科学
中国环境科学学会

中国环境科学

CSTPCDCHSSCD北大核心
影响因子:2.174
ISSN:1000-6923
年,卷(期):2024.44(5)