首页|基于地理加权随机森林的长三角PM2.5建模

基于地理加权随机森林的长三角PM2.5建模

扫码查看
采用随机森林(RF)和地理加权随机森林(GWRF)对长三角地区 2003~2019年的PM2.5浓度及其驱动因素数据进行训练、校验与测试,并探讨它们之间的关系.结果表明:(1)相比RF模型,GWRF模型对PM2.5浓度的训练和预测更优,其各项模型评估指标均优于RF模型,且GWRF模型残差的空间自相关性更低.(2)GWRF模型预测2019年PM2.5浓度分布优于RF模型,与实际观测浓度分布基本一致,但两个模型均存在北部高估南部低估的情况,且高估区域大于低估区域.(3)RF模型在研究PM2.5浓度分布最重要且显著的驱动因子方面是全局性的,而GWRF模型得到干旱、气温、温差、风速以及人类干扰对PM2.5分布的影响是局部性的.在大尺度下,这种局部性的效应对于PM2.5精细化防控更具实际性的指导意义.此外,在全球气候暖干化和区域气候空间异质性的背景下,把干旱融入PM2.5预测并建立具有局部效应的模型有助于环境监管机构及决策者制定防控措施.
Modeling of PM2.5 in the Yangtze River delta based on geographically weighted random forest
This study used Random Forest(RF)and Geographically Weighted Random Forest(GWRF)to train,verify,and test the PM2.5 concentration and data of its driving factors in the Yangtze River delta region from 2003 to 2019 and explore their relationships.The results show that:(1)Compared with the RF model,the GWRF model performs better in training and predicting PM2.5 concentration.The evaluation indicators of the GWRF model are better,and the residual spatial autocorrelation is lower than the RF model.(2)The GWRF model predicts a better PM2.5 concentration distribution in 2019 than the RF model,which is basically consistent with the actual observed concentration distribution.However,overestimation in the north,underestimation in the south,and the area of overestimation are more significant than the underestimation for the two models.(3)The RF model is global in studying the most significant driving factors of PM2.5concentration distribution.In contrast,the GWRF model's interpretation of PM2.5 influence by drought,temperature,temperature difference,wind,and human interference shows a localized effect.On a large scale,this localized effect has practical guidance for preventing and controlling PM2.5.In addition,in the context of global climate warming and spatial heterogeneity of regional climate,integrating drought into PM2.5 prediction and establishing models with localized effects can help environmental regulatory agencies and decision-makers formulate prevention and control measures.

PM2.5 driving factorsgeographically weighted random forestsspatial effectsYangtze River Delta region

陈艺敏、苏漳文、陈移萍、林子彭

展开 >

漳州职业技术学院石油化工学院,福建漳州 363000

福建省精细化工应用技术协同创新中心,福建漳州 363000

PM2.5驱动因素 地理加权随机森林 空间效应 长三角地区

福建省中青年教师教育科研项目(科技类)2023年度漳州职业技术学院博士科研启动资金

JAT220690ZZYB2305

2024

中国环境科学
中国环境科学学会

中国环境科学

CSTPCDCHSSCD北大核心
影响因子:2.174
ISSN:1000-6923
年,卷(期):2024.44(8)
  • 10