首页|盐渍化农田排水沟水体溶存N2O浓度预测

盐渍化农田排水沟水体溶存N2O浓度预测

扫码查看
本研究选取宁夏青铜峡灌区的典型盐渍化农田排水沟作为研究对象,基于采集的排水沟上覆水体关键水质参数溶解性有机碳(DOC)、水温(WT)、硝态氮(NO3--N)和电导率(EC),构建了参数优化后的N2O溶存浓度反向传播(BP)神经网络预测模型,并通过遗传算法(GA)和蚁群算法(ACO)对模型进行了优化,以提高预测精度和稳定性。结果表明,EC的增加显著促进了排水沟上覆水体中氧化亚氮(N2O)的溶存浓度的提升,NO3--N、EC与N2O溶存浓度之间存在极显著的正相关关系,而WT、DOC则与N2O溶存浓度表现出显著的负相关性。利用排水沟上覆水体N2O溶存浓度实测数据进行验证,证实了所构建模型的有效性和可靠性,其中ACO-BP模型预测值和实测值的相关系数均大于0。70,最佳情况下R2达到了 0。79,平均相对误差(MRE)仅为7。26%。
Predicting dissolved N2O concentrations from drainage ditches in salt-affected farmlands
This study selected typical saline-alkali agricultural drainage ditches from the Qingtongxia Irrigation District in Ningxia as the subject of research.Based on key water quality parameters of the water body overlying the drainage ditches,including dissolved organic carbon(DOC),water temperature(WT),nitrate nitrogen(NO3--N),and electrical conductivity(EC),a backpropagation(BP)neural network predictive model for the dissolved concentration of Nitrous oxide(N2O)with optimized parameters was constructed.The model was further optimized using Genetic Algorithm(GA)and Ant Colony Optimization(ACO)to enhance the prediction accuracy and stability.The results indicate that an increase in EC significantly promotes the dissolved concentration of N2O in the water body overlying the drainage ditches.There is an extremely significant positive correlation between NO3--N and EC with the dissolved concentration of N2O,while WT and DOC show a significant negative correlation with the dissolved concentration of N2O.The effectiveness and reliability of the constructed model were verified using actual measured data of the dissolved concentration of N2O in the water body overlying the drainage ditches,with the correlation coefficient of the predicted values and actual measured values of the ACO-BP model all exceeding 0.70.Under the best conditions,the coefficient of determination(R2)reached 0.79,and the Mean Relative Error(MRE)was only 7.26%.

dissolved nitrous oxide in water bodiesBPNNoptimization algorithmwater quality monitoring

嵇晶晶、佘冬立、阿力木·阿布来提、潘永春

展开 >

河海大学农业科学与工程学院,江苏 南京 211100

溶存氧化亚氮浓度 BP神经网络 优化算法 水质监测

国家自然科学基金

42177393

2024

中国环境科学
中国环境科学学会

中国环境科学

CSTPCDCHSSCD北大核心
影响因子:2.174
ISSN:1000-6923
年,卷(期):2024.44(10)