首页|基于伴随模式的典型PM2.5和O3双高污染事件减排措施

基于伴随模式的典型PM2.5和O3双高污染事件减排措施

扫码查看
为了探讨PM2。5和O3双高污染及其有效控制措施,运用GRAPES-CUACE伴随模式对2019年4月19~25日北京市的一次典型双高污染事件进行"源-浓度"敏感性分析,定量评估了本地及周边地区前体物排放对北京市24h平均PM2。5(24-hrPM2。5)和MDA8O3浓度峰值的贡献,并利用伴随模式开展相应的减排措施试验。伴随敏感性分析结果表明,此次北京市双高污染事件的24-hr PM2。5和MDA8O3浓度峰值受到本地及周边地区的前体物排放的共同影响。一次PM2。5(PPM2。5)排放源对24-hr PM2。5浓度峰值的主要贡献在前48h,其中河北源贡献最大(49。7%),其次是山东源(24。4%)和北京源(20。1%)。O3的生成由VOCs控制,NOx和VOCs排放源的主要贡献时段分别为前30h和前38h。其中河北贡献最大,NOx和 VOCs分别贡献了 27。0%和23。8%,北京源(20。9%和4。9%)次之。双高污染的减排试验结果显示,当北京市24-hr PM2。5浓度峰值达标时,NOx、VOCs和PPM2。5减排比例相近,各省市的减排力度依次为:河北(55。8%、59。1%和 61。3%)、北京(60。0%,47。4%和 60。4%)、山东(44。0,51。2%和 61。3%)、天津(42。7%,42。7%和 42。7%)及山西(44。0%,40。9%和42。7%)。而MDA8O3浓度峰值在迭代过程中先上升后下降,达标时需减排较多NOx和 VOCs。各省市减排力度依次为河北(67。8%和67。1%)、北京(66。0%和 56。3%)、山东(57。3%和 59。5%)、天津(50。9%和 52。4%)及山西(55。4%和 46。0%)。
Emission reduction measures for typical PM2.5and O3 co-pollution event based on the adjoint model
To investigate PM2.5 and O3 co-pollution and its effective control measures,the"source-concentration"sensitivity analysis of a typical co-pollution event in Beijing from April 19 to 25,2019 was conducted by GRAPES-CUACE adjoint model in this paper.The contribution of local and surrounding precursor emissions to the peak concentrations of 24h average PM2.5(24-hr PM2.5)and MDA8O3 in Beijing was quantitatively assessed,and corresponding emission reduction experiments were conducted using the adjoint model.The results of the adjoint sensitivity analysis indicated that the peak concentrations of 24-hr PM2.5 and MDA8O3 in Beijing were jointly influenced by the precursor emissions from both local and surrounding areas.The peak 24-hr PM2.5 concentrations were mainly contributed by primary PM2.5(PPM2.5)emission sources within the preceding 48h,with the largest contribution from Hebei(49.7%),followed by Shandong(24.4%)and Beijing(20.1%).The formation of O3 was controlled by VOCs.The primary contribution periods were within the first 30h for NOx and the first 38h for VOCs.Hebei made the largest contributions,with NOx and VOCs contributing 27.0%and 23.8%,respectively,followed by Beijing(20.9%and 4.9%).The results of the emission reduction experiments for co-pollution event showed that when the peak 24-hr PM2.5 concentrations in Beijing met the standard,the reduction percentages of NOx,VOCs and PPM2.5 were similar,with the reduction percentages for each province as follows:Hebei(55.8%,59.1%,and 61.3%),Beijing(60.0%,47.4%,and 60.4%),Shandong(44.0%,51.2%,and 61.3%),Tianjin(42.7%,42.7%,and 42.7%),and Shanxi(44.0%,40.9%,and 42.7%).The peak MDA8O3 concentrations initially increased and then decreased during the iterative process,and more NOx and VOCs needed to be reduced when reaching the standard.The emission reduction percentages for local and surrounding areas were as follows:Hebei(67.8%and 67.1%),Beijing(66.0%and 56.3%),Shandong(57.3%and 59.5%),Tianjin(50.9%and 52.4%),and Shanxi(55.4%and 46.0%).

adjoint modelingPM2.5 and O3 co-pollutionsensitivity analysispollution controlBeijing

刘哲、安兴琴、王超、李江涛

展开 >

中国气象科学研究院气象影响与风险研究中心,北京 100081

中国气象局地球系统数值预报中心,北京 100081

伴随模式 PM2.5和O3双高污染 敏感性分析 污染控制 北京

2024

中国环境科学
中国环境科学学会

中国环境科学

CSTPCDCHSSCD北大核心
影响因子:2.174
ISSN:1000-6923
年,卷(期):2024.44(12)