首页|基于机器学习的碳酸盐岩油藏地层压力预测

基于机器学习的碳酸盐岩油藏地层压力预测

扫码查看
地层压力涉及到开发方式、配产配注等调整,是油田开发过程中极为重要的参数.但获取地层压力需要关井进行压力恢复,操作繁琐,数值模拟法工作量大且计算耗时,现有公式法不太适合采用复杂工作制度的碳酸盐岩油藏.基于相关性计算和主成分分析等数据预处理过程,结合精英策略遗传算法和支持向量回归模型(SEGA-SVR),建立了基于数据驱动的地层压力预测模型.SEGA-SVR模型在训练集决策系数得分为0.97,均方根误差为0.04;测试集决策系数得分0.95,均方根误差为0.05,对邻区验证井也有较好的表现.SEGA-SVR模型的性能与SVR模型相比有了很大提高,与其他机器学习模型相比,总体来说表现最优.研究结果表明,SEGA-SVR模型无需关井即可预测实时地层压力,且通过遗传算法调参省时省力,数据驱动的方式可更好适应复杂情况.同时该模型具有较好的泛化性和稳定性,预测效果较好,为碳酸盐岩油田地层压力预测提供了新方法.
Formation pressure prediction in carbonate reservoirs based on machine learning
Formation pressure is a crucial parameter in the process of oilfield development,involving adjustments such as development methods and production allocation and injection.However,obtaining formation pressure typically requires shut-in wells for pressure buildup tests,which are cumbersome.Numerical simulation methods are also labor-intensive and are time-consuming,while existing empirical formula methods are not well-suited for complex operational regimes in carbonate reservoirs.In this study,a data-driven prediction model for formation pressure is developed using a combination of correlation calculation,principal component analysis,elite strategy genetic algorithm,and support vector regression(SEGA-SVR).The SEGA-SVR model achieved high performance metrics,with a coefficient of determination(R2)of 0.97 and a root mean square error(RMSE)of 0.04 on the training set,and R2 of 0.95 and RMSE of 0.05 on the testing set.The model also demonstrated good performance on validation wells in neighboring areas.Compared to traditional SVR models,the SEGA-SVR model showed significant improvement in performace.Additionally,it outperformed other machine learning models overall.The research results show that the SEGA-SVR model can predict real-time formation pressure without the need for well shut-in,and the parameter tuning using genetic algorithm is efficient.The data-driven approach can allows for better adaptation to complex situations.Moreover,the model exhibits good generalization and stability,providing a new method for predicting formation pressure in carbonate reservoirs.

carbonate reservoirsformation pressure forecastingdata drivenmachine learninggenetic algorithmsupport vector machine

孙浩、夏朝辉、李云波、余洋、杨朝蓬、徐立坤

展开 >

中国石油勘探开发研究院 北京 100083

碳酸盐岩油藏 地层压力预测 数据驱动 机器学习 遗传算法 支持向量机

中国石油科技重大专项

2023ZZ19

2024

中国海上油气
中海石油研究中心

中国海上油气

CSTPCD北大核心
影响因子:1.266
ISSN:1673-1506
年,卷(期):2024.36(2)
  • 34