首页|脑卒中患者发生运动功能障碍列线图风险预测模型的构建及验证

脑卒中患者发生运动功能障碍列线图风险预测模型的构建及验证

Establishment and validation of a nomogram risk prediction model for motor dysfunction in stroke patients

扫码查看
目的 基于单中心数据,对脑卒中患者发生运动功能障碍的相关预测因素进行调查,建立列线图预测模型并进行验证.方法 选取2021年1月—2022年11月扬州大学附属医院进行治疗的脑卒中患者为研究对象,根据有无发生运动功能障碍将患者作为发生组及未发生组;通过多因素Logistic回归分析筛选运动功能障碍发生的危险因素,R 4.0.3软件构建列线图预测模型;采用受试者工作特征(ROC)曲线、校准图形验证模型的区分度以及一致性.结果 本研究中267例脑卒中患者有198例出现运动功能障碍发生,发生率为74.16%;多因素Logistic回归分析结果表明女性(OR=7.143)、文化程度为初中及以下(OR=3.462)、年龄≥65岁(OR=3.923)、病程为急性期(OR=6.622)、有糖尿病(OR=3.551)、有心房颤动(OR=6.138)、有复发(OR=2.962)、入院NIHSS评分(OR=1.745)为影响运动功能障碍发生的危险因素(P<0.05);基于以上危险因素建立预测脑卒中患者运动功能障碍发生风险的列线图模型,ROC曲线显示,该模型预测脑卒中风险的AUC为0.961(95%CI:0.942~0.981),H-L拟合优度检验显示,列线图模型中实际观测值与风险预测值的偏差无统计学意义(x2=6.154,P=0.630).结论 性别、文化程度、年龄、病程、糖尿病、心房颤动、复发、入院NIHSS评分是预测脑卒中患者运动功能障碍发生的独立危险因素,基于上述参数建立列线图预测模型,有助于临床早期识别运动功能障碍发生的高危人群,为临床个体化诊疗提供参考.
Objective Based on single center data,to investigate the predictive factors of motor dysfunction in stroke patients,and the nomogram prediction model was established and verified.Methods The patients with stroke who were treated in Affiliated Hospital of Yangzhou University hospital from January 2021 to November 2022 were selected as the research objects,and the patients were taken as the occurrence group and the non occurrence group according to whether there was motor dysfunction;The risk factors of motor dysfunction were screened by multi-factor Logistic regression analysis,and the nomogram prediction model was constructed by R 4.0.3 software;ROC curve and calibration graph were applied to verify the discrimination and consistency of the model.Results In this study,198 of 267 stroke patients had motor dysfunction,with an incidence of 74.16%;Multivariate Logistic regression analysis showed that female(OR=7.143),education level of junior high school or below(OR=3.462),age ≥65 years(OR=3.923),course of disease(OR=6.622),diabetes(OR=3.551),atrial fibrillation(OR=6.138),recurrence(OR=2.962),admission NIHSS score(OR=1.745)were all risk factors affecting the occurrence of motor dysfunction(P<0.05);based on the above risk factors,an nomograph model was established to predict the risk of motor dysfunction in stroke patients,the ROC curve showed that the AUC of this model for predicting the risk of stroke was 0.961(95%CI:0.942-0.981).H-L goodness of fit test showed that the deviation between the actual observation value and the risk prediction value in the nomogram model was not statistically obvious(x2=6.154,P=0.630).Conclusion There are many independent risk factors affecting the occurrence of motor dysfunction in stroke patients.The constructed nomogram prediction model can effectively predict the occurrence risk of motor dysfunction and provide reference for individual clinical diagnosis and treatment.

StrokeMotor dysfunctionRisk factorsNomograph model

黄欢、田丽、方丽

展开 >

扬州大学附属医院急诊科,江苏扬州 225000

扬州大学附属医院神经内科,江苏扬州 225000

脑卒中 运动功能障碍 危险因素 列线图模型

江苏省2018年医院管理创新研究课题

JSYGY-2-2018-59

2024

中国急救复苏与灾害医学杂志
中国医学救援学会

中国急救复苏与灾害医学杂志

CSTPCD
影响因子:0.568
ISSN:1673-6966
年,卷(期):2024.19(1)
  • 19