首页|面向评分预测的多头图注意力和判别优化网络

面向评分预测的多头图注意力和判别优化网络

扫码查看
目的:为了充分挖掘用户与物品之间复杂的交互行为,构建了多头图注意力和判别优化网络用于评分预测任务.方法:首先,针对每个用户-物品对构建评分子图.然后,使用多头注意力图卷积网络在子图上进行训练,以预测子图上对应的评分.在消息传递过程中,采用注意模块和聚合模块来计算不同邻居对中心节点的重要程度,可以有效地聚合相邻节点的信息,从而获得更准确的用户和物品表示.最后,引入判别模型来优化预测评分,通过与真实评分的对比,使其更加准确地预测用户对物品的评分.结果:在多个数据集上进行对比实验,验证了所构建的模型具有最优的预测效果.结论:多头图注意力和判别优化网络能够有效提高评分预测性能.
A multi-head graph attention and discriminative optimization network for rating prediction
Aims:In order to fully explore the complex interaction between users and items,a multi-head attention and discriminative optimization network was proposed for the rating prediction task.Methods:Firstly,a rating subgraph for each user-item pair was constructed.Then,the multi-head attention graph convolutional network on the subgraph was trained to predict the corresponding rating.During the message passing process,attention and aggregation modules were employed to calculate the importance of different neighbors to the central node,effectively aggregating the information from neighbors to obtain better representations of users and items.Finally,the discriminative model was introduced to optimize the predicted ratings,improving the accuracy of predicting user ratings for items by comparing them with the real ratings.Results:Comparative experiments were conducted on multiple datasets to validate the superior predictive performance of the proposed model.Conclusions:The proposed multi-head graph attention and discriminative optimization network can effectively improve the performance of rating prediction.

recommendation systemrating predictiongraph neural networkattention mechanism

代星月、叶海良、杨冰、曹飞龙

展开 >

中国计量大学理学院,浙江杭州 310018

推荐系统 评分预测 图神经网络 注意力机制

国家自然科学基金国家自然科学基金

6217624462006215

2024

中国计量大学学报
中国计量学院

中国计量大学学报

CHSSCD
影响因子:0.357
ISSN:2096-2835
年,卷(期):2024.35(1)
  • 36