首页|深度学习在新型冠状病毒诊断中的研究综述

深度学习在新型冠状病毒诊断中的研究综述

扫码查看
目的:总结当前主要挑战和可能的发展方向,为未来的新冠病毒诊断研究提供科学的参考依据.方法:系统地分析人工智能技术在新型冠状病毒快速诊断中的研究进展,包括计算机断层扫描图像、胸部X射线图像和聚合酶链式反应数据基础上的人工智能诊断技术,同时深入分析这些工作的特点.结果:人工智能算法在预测、诊断和图像分类方面表现出了巨大的潜力,可以帮助医疗机构缓解医疗资源短缺、提高诊断效率和临床治疗效果.结论:有必要对人工智能算法辅助疾病识别和诊断的医学方法进行进一步研究,以研发出能够满足临床疾病诊断需求的医学人工智能算法.
A research review of deep learning in the diagnosis of COVID-19
Aims:This paper aims to summarize the current main challenges and the possible development directions and to provide scientific references for the new coronavirus diagnosis research.Methods:The research progress of artificial intelligence technology in the rapid diagnosis of the novel coronavirus was systematically analyzed,including the artificial intelligence diagnosis techniques based on the computed tomography image,the X-ray image and the polymerase chain reaction data.The characteristics of these work were analyzed in depth.Results:AI algorithms showed great potential in prediction,diagnosis,and image classification,which could help medical institutions alleviate the shortage of medical resources,improve diagnostic efficiency and clinical treatment outcomes.Conclusions:It is necessary to further study the medical methods of artificial intelligence algorithms to assist disease identification and diagnosis and to develop medical artificial intelligence algorithms that can meet the need of clinical disease diagnosis.

COVID-19artificial intelligencenucleic acid testingcomputed tomographyX-ray imagepolymerase chain reaction(PCR)

沈奇、姜万顺、王奕鹏、肖丙刚

展开 >

中国计量大学信息工程学院,浙江杭州 310000

COVID-19 人工智能 核酸检测 计算机断层扫描 胸部X射线扫描 聚合酶链式反应(PCR)

杭州市重大科技创新项目(2022)杭州市重大科技创新项目(2022)

2022AIZD00852022AIZD0016

2024

中国计量大学学报
中国计量学院

中国计量大学学报

CHSSCD
影响因子:0.357
ISSN:2096-2835
年,卷(期):2024.35(1)
  • 83