首页|基于SMOTE-GA-AdaBoost模型的新兴技术识别研究

基于SMOTE-GA-AdaBoost模型的新兴技术识别研究

Research on the identification of emerging technologies based on the SMOTE-GA-AdaBoost model

扫码查看
目的:针对新兴技术识别中存在的数据不平衡及预测准确率低的问题,优化指标体系,提出结合数据和算法的组合模型.方法:首先,改进传统新兴技术识别指标体系,加入技术前沿性;其次,采用SMOTE过采样技术改善数据类间不平衡,利用遗传算法调参提高AdaBoost算法的分类准确率和收敛速度,组成SMOTE-GA-AdaBoost模型;最后,根据智慧芽平台上的智能网联车专利数据进行实证验证.结果:该模型准确率均值为94.69%,召回率均值为89.75%,F1均值为94.42%,分类性能优于其他模型,且稳定性好.结论:本研究提出的新兴技术识别方法能够有效处理数据不平衡问题,并提高了识别准确率.
Aims:This paper aims to address the issues of data imbalance and low prediction accuracy in the emerging technology recognition.The indicator system was optimized;and a composite model that combined the resampling technique and resemble algorithms was proposed.Methods:Firstly,technology frontier was added to improve the traditional emerging technology identification indicator system.Secondly,in our composite model,the SMOTE oversampling technique was used to improve the imbalance between data classes.An AdaBoost algorithm with the Genetic algorithm was used to improve model classification accuracy and convergence speed.For clarity,this composite model was called the SMOTE-GA-AdaBoost model.Finally,the patent data from intelligent connected vehicles in the Patsnap patent database was used to test the effectiveness of the above model.Results:The average accuracy of this model was 94.69%.The average recall rate was 89.75%;and the average F1 was 94.42%.The classification accuracy and stability of this composite model were better than other models.Conclusions:The emerging technology identification method can effectively address the issue of imbalanced data and improve the recognition accuracy.

emerging technologiesmachine learningunbalanced datacomposite model

韩香丽、吴增源、陈亮、何斌

展开 >

中国计量大学经济与管理学院,浙江杭州 310018

中国计量大学光学与电子科技学院,浙江杭州 310018

西尼机电(杭州)有限公司,浙江杭州 310017

新兴技术 机器学习 不平衡数据 组合模型

浙江省重点研发计划浙江省自然科学基金

2021C01027LY20G010008

2024

中国计量大学学报
中国计量学院

中国计量大学学报

CHSSCD
影响因子:0.357
ISSN:2096-2835
年,卷(期):2024.35(1)
  • 41