首页|零知识证明中椭圆曲线运算的硬件加速方法研究

零知识证明中椭圆曲线运算的硬件加速方法研究

扫码查看
目的:针对零知识证明协议纯软件部署存在的低时延、低功耗服务要求难以满足,以及硬件加速芯片协议适配性差和开发周期长的问题,提出了一种用于零知识证明的椭圆曲线点加计算流式计算架构。方法:实现了点加计算的硬件设计,对高位模运算设计了低时延、可扩展的硬件计算单元,在点加计算的各个计算阶段间规划数据流实现了流水设计,使用OpenCL与HLS,在基于FPGA的异构计算平台上,对不同规模的点乘、多标量乘法计算任务进行了软硬件协同加速。结果:在AMD Xilinx Alevo U50数据中心加速卡上,多标量乘法运算相比于AMD Ryzen 9 5900X(3。7 GHz)CPU单核及12核运行分别获得了 41。5倍及3倍的加速比,硬件加速模块相比于纯软件方式获得了最高12。42倍的能效提升。结论:该计算架构有效提高了硬件资源利用率,降低了椭圆曲线运算时延以及功耗开销。
Research on the hardware acceleration method for elliptic curve operations in zero-knowledge proof
Aims:Aiming at the problems that the pure software deployment of the zero-knowledge proof protocol was difficult to meet the requirements of low latency and low power consumption services,as well as the poor protocol adaptability and long development cycle of the hardware acceleration chip,a streaming computing architecture for elliptic curve point addition computation for zero-knowledge proof was proposed.Methods:The point addition computation hardware was designed.A low-latency and scalable hardware computing unit was designed for high-position modulus operation;and a pipeline was designed by planning the data flow between each computing stage of point addition computation.OpenCL and HLS were used to conduct software-hardware collaborative acceleration for point multiplication and multi-scalar multiplication computing tasks of different scales on the FPGA-based heterogeneous computing platform.Results:On the AMD Xilinx Alevo U50 data center accelerator card,multiple scalar multiplication operations achieved 41.5 times and 3 times faster than single core and 12 core operations on the AMD Ryzen 9 5900X(3.7 GHz)CPU,respectively.The hardware acceleration module achieved a maximum energy efficiency improvement of 12.42 times compared with the pure software mode.Conclusions:This computing architecture effectively improves the utilization rate of hardware resources and reduces the latency and power consumption overhead of elliptic curve operations.

FPGAelliptic curvezero-knowledge proofhigh-level synthesisheterogeneous computing

丁冬、李正权

展开 >

江南大学 物联网工程学院,江苏 无锡 214122

北京邮电大学网络与交换技术全国重点实验室,北京 100876

现场可编程门阵列 椭圆曲线 零知识证明 高层次综合 异构计算

北京邮电大学网络与交换技术全国重点实验室开放课题资助项目

SKLNST-2023-1-13

2024

中国计量大学学报
中国计量学院

中国计量大学学报

CHSSCD
影响因子:0.357
ISSN:2096-2835
年,卷(期):2024.35(2)