首页|基于因果不变表示的领域泛化算法

基于因果不变表示的领域泛化算法

扫码查看
目的:针对当前领域泛化方法没有考虑到数据和标签之间潜在的因果机制,忽视特征间潜在的语义依赖关系的问题,提出了一种通过解藕因果不变表示(decoupling causal invariant representation,DCIR)实现的领域泛化方法。方法:首先利用矩对原数据进行因果干预,生成具有相同因果特征不同非因果特征的增强数据,模拟非因果特征的可变性。并且提出了解藕邻近因子分解算法(decoupling proximity factorization algorithm,DPFA),基于经验协方差矩阵,通过设置滑动窗口与削减值,获取干预前后的特征不变表示及特征之间潜在的语义依赖关系。结果:在Digits、PACS和CIFAR10-C 3种基准数据集上进行了广泛实验,提出的DCIR方法相较于现有的的基线模型,平均精度分别最高可达到13。6%、26。29%、18。9%的提升。结论:通过解耦因果不变表示实现的领域泛化方法能够有效提升模型的泛化性能。
A domain generalization algorithm based on causal invariant representation
Aims:Aiming at the current domain generalization methods where the potential causal mechanism between data and labels was not cousidered and the potential semantic dependencies between features was ignored,a domain generalization method realized by decoupling causal invariant representation(DCIR)was proposed.Methods:Firstly,the moment was used to carry out causal intervention on the original data;and the enhanced data with different non-causal characteristics with the same causal characteristics was generated to simulate the variability of the non-causal characteristics.Furthermore,a decoupling proximity factorization algorithm(DFPA)was proposed,based on the empirical covariance matrix,by setting the sliding window and the cutting value,to obtain the invariant representation of features before and after the intervention and the potential semantic dependencies between features.Results:Extensive experiments were conducted on three benchmark datasets,namely Digits,PACS,and CIFAR10-C.The proposed DCIR method achieved average accuracy improvements of up to 13.6% ,26.29% ,and 18.9% ,respectively,compared to the existing baseline models.Conclusions:The domain generalization method implemented through decoupling causal invariant representation can effectively improve the generalization performance of the model.

domain generalizationinvariant learning methodscausal mechanismmoment intervention

李祥宁、潘晨、何灵敏

展开 >

中国计量大学信息工程学院浙江省电磁波信息技术与计量检测重点实验室,浙江杭州 310018

领域泛化 不变学习方法 因果机制 矩干预

浙江省自然科学基金项目

LY19F030013

2024

中国计量大学学报
中国计量学院

中国计量大学学报

CHSSCD
影响因子:0.357
ISSN:2096-2835
年,卷(期):2024.35(2)