首页|基于CT影像数据的出血性脑卒中人工智能辅助诊治模型研究

基于CT影像数据的出血性脑卒中人工智能辅助诊治模型研究

扫码查看
目的:建立出血性脑卒中人工智能辅助诊治模型。方法:依据血肿体积增长绝对量和相对量判断患者是否发生血肿,综合考虑患者临床和影像信息,基于随机森林方法对患者血肿扩张风险进行预测。提出了一种基于高斯时序拟合的患者水肿进展模式亚类分组方法,得出不同疗法对水肿体积进展的影响。结果:血肿预测数学模型准确率达到了 0。819,治疗方法重要性占比前两项是降颅压和镇静镇痛,它们占所有治疗方法效果的23。4%和22。1%。结论:本血肿预测模型能够有效预测患者血肿发生情况,降颅压和镇静镇痛治疗方法具有更好的水肿控制效果。
Research on artificial intelligence-assisted diagnosis and treatment model of hemorrhagic strokes based on CT image data
Aims:This paper aims to Establish an artificial intelligence-assisted diagnosis and treatment model for hemorrhagic strokes.Methods:Based on the absolute and relative increase of hematoma volume,the occurrence of hematoma in patients was determined.Taking into account the clinical and the imaging information,the risk of hematoma expansion in patients was predicted using the random forest method.A subcategory grouping method for patient edema progression patterns based on Gaussian time series fitting was proposed;and the effects of different therapies on edema volume progression were obtained.Results:The accuracy of the hematoma predicting model reached 0.819;and the first two important treatment methods were intracranial pressure reduction and sedation and analgesia,which accounted for 23.4%and 22.1%of the effectiveness of all treatment methods.Conclusions:The hematoma prediction model can effectively predict the occurrence of hematoma in patients;and the cranial pressure reduction and sedation/analgesia treatment methods have a most important effect of edema control.

hemorrhagic strokerandom forest methodartificial intelligence-assisted diagnosis and treatment

张心怡、王林霞、周韩祺、陈苗根

展开 >

中国计量大学理学院,浙江 杭州 310018

出血性脑卒中 随机森林方法 人工智能辅助诊治

2024

中国计量大学学报
中国计量学院

中国计量大学学报

CHSSCD
影响因子:0.357
ISSN:2096-2835
年,卷(期):2024.35(3)