首页|强直性脊柱炎关键基因的多芯片联合分析

强直性脊柱炎关键基因的多芯片联合分析

Bioinformatic analysis of crucial genes in ankylosing spondylitis across multiple microarrays

扫码查看
[目的]分析基因表达综合(GEO)数据库中的强直性脊柱炎(ankylosing spondylitis,AS)及正常人的膝关节滑膜组织的RNA测序结果,筛选出相关的差异表达基因(differentially expressed genes,DEGs),为AS的诊疗提供新的生物学靶向策略.[方法]从GEO数据库下载GSE41038和GSE39340数据集,质控后筛选AS的DEGs,并进行功能富集和通路分析.随后利用在线数据库(Search Tool for Retrieval of Interacting Genes,STRING)构建已鉴定基因的蛋白-蛋白相互作用(protein-protein interaction,PPI)网络,并通过Cytoscape软件筛选出连接度最高的基因,评估关键基因对AS的诊断效能.[结果]在AS患者和正常人之间共鉴定出433个DEGs,其中276个上调,157个下调,GO分析显示这些DEGs主要参与T细胞激活的正向调控、细胞外基质结构成分;KEGG富集结果主要与类NF-κB信号通路、TNF信号通路结合等功能相关;运用STRING数据库构建PPI网络并筛选出10个网络中的核心基因:CASP3、CD36、CXCR4、EGFR、FGF10、IL-1β、MMP1、MMP3、SELL、TLR2.[结论]采用生物信息学方法分析AS的潜在机制,并筛选出10个重要分子,可能是AS潜在的关键基因和生物学标志物.
[Objective]To utilize bioinformatics methods to screen for differentially expressed genes(DEGs)associated with ankylosing spondylitis(AS)in the Gene Expression Omnibus database(GEO),aiming to provide new biological targeting strategies for the clinical diag-nosis and treatment of AS.[Methods]Datasets GSE41038 and GSE39340 were downloaded from the GEO database.After data processing,DEGs related to AS were selected.Functional enrichment and pathway analyses were then performed on these DEGs.Subsequently,the pro-tein-protein interaction(PPI)network of the identified genes was constructed using the online database(Search Tool for Retrieval of Interact-ing Genes,STRING)and visualized using Cytoscape software.[Results]A total of 433 DEGs were identified between AS patients and healthy individuals,with 276 upregulated and 157 downregulated.GO analysis revealed that these DEGs were mainly involved in positive regulation of T cell activation and collagen-containing extracellular matrix.KEGG enrichment results were primarily associated with NF-kappa B signaling pathway and TNF signaling pathway.Using the STRING database,a protein interaction network was constructed,with Cy-toscape identified the top 10 genes with the highest connectivity,including CASP3,CD36,CXCR4,EGFR,FGF10,IL-1β,MMP1,MMP3,SELL and TLR2.[Conclusion]In this study,the potential mechanism of AS was analyzed by bioinformatics method,and 10 important mole-cules were screened,which may be the potential key genes and biological markers of AS.

ankylosing spondylitisbioinformaticsdifferentially expressed genesbiomarkers

甘露、李中耀、吴毅东、于康康、李春宝

展开 >

中国人民解放军总医院第四医学中心骨科医学部运动医学科,北京 100048

强直性脊柱炎 生物信息学 差异表达基因 生物学标志物

2024

中国矫形外科杂志
中国残疾人康复协会 中国人民解放军第八十八医院

中国矫形外科杂志

CSTPCD北大核心
影响因子:1.521
ISSN:1005-8478
年,卷(期):2024.32(12)