首页|恢复期脑外伤患者日常生活活动能力的预测模型研究

恢复期脑外伤患者日常生活活动能力的预测模型研究

扫码查看
目的:分析影响住院康复的脑外伤患者出院时日常生活活动(activity of daily living,ADL)能力和住院期间ADL能力改善程度的因素,并建立预测模型.方法:回顾性收集2017年9月-2020年9月在北京博爱医院神经康复科住院的220例脑外伤患者资料数据,按3:1随机分为训练集和验证集,对所有变量进行描述性分析.分别以训练集出院时Barthel指数(Barthel index,BI)和出入院BI差值为结局指标,先通过单因素分析筛选有显著性意义的影响因素,然后采用多因素逻辑回归分析建立预测模型,采用受试者工作特征曲线(receiver operating characteristic,ROC)、校准曲线和Hosmer-Lemeshow检验评价模型在训练集和验证集中的区分度和校准度.结果:通过多因素Logistic回归建立了两个预测模型:①入院时病程、入院时Fugl-Meyer平衡功能评分(Fugl-Meyer balance,FMB)、入院时BI是患者出院时BI的显著影响因素,以出院时BI为结局的预测模型在训练集和验证集中曲线下面积分别为 0.957(95%CI:0.930-0.983)和 0.917(95%CI:0.839-0.994),模型区分度较好,Hosmer-Leme-show检验结果分别为P=0.196和P=0.551,模型校准度较好.模型的灵敏度、特异度、约登指数分别为91.4%(95%CI:0.833-0.959)、83.3%(95%CI:0.723-0.907)、0.747.②入院时病程、住院天数、年龄显著影响出入院BI差值,建立的预测模型在训练集和验证集中曲线下面积分别为0.773(95%CI:0.702-0.844)和0.747(95%CI:0.613-0.881),Hosmer-Lemeshow检验结果分别为P=0.721和P=0.274,模型区分度和校准度良好.模型的灵敏度、特异度、约登指数分别为 77.2%(95%CI:0.670-0.850)、64.4%(95%CI:0.522-0.750)、0.416.结论:建立的两个预测模型将帮助康复医生根据脑外伤患者入院时状况初步判断出院时的功能独立水平和住院期间的功能改善程度,为康复医疗工作提供参考.
Prediction model of daily living activity in convalescent patients with traumatic brain injury
Objective:To analyze the factors influencing the ADL ability and the improvement degree of ADL ability at discharge of hospitalized patients with TBI and to establish prediction models.Method:Data of 220 patients with traumatic brain injury hospitalized in the department of neurorehabilitation,Beijing Boai hospital from september 2017 to september 2020 were retrospectively collected.They were ran-domly divided into training set and validation set according to 3:1,and descriptive analysis was conducted for all variables.BI score at discharge and BI score difference between admission and discharge were used as out-come indexes.Firstly,univariate analysis was used to screen the statistically significant influencing factors,and then multivariate logistic regression analysis was used to establish the prediction model.Receiver operating characteristic(ROC)curve,calibration curve and Hosmer-Lemeshow test were used to evaluate the differentia-tion and calibration of the model in the training set and validation set.Result:Two prediction models were established by multivariate logistic regression:①Duration of disease at ad-mission,FMB at admission and BI at admission were significant influencing factors of BI at discharge.The ar-ea under the curves of the prediction model with BI at discharge was 0.957(95%CI:0.930-0.983)and 0.917(95%CI:0.839-0.994)in the training set and validation set,respectively,showing good model differentiation.Hosmer-lemeshow test results were P=0.196 and P=0.551,respectively,indicating a good calibration degree of the model.The sensitivity,specificity,and Youden index of the logistic regression model were 91.4%(95%CI:0.833-0.959)、83.3%(95%CI:0.723-0.907)and 0.747,respectively.②The duration of disease,length of stay and age at admission significantly affected the BI difference.The areas of the established prediction mod-el under the curves of training set and validation set were 0.773(95%CI:0.702-0.844)and 0.747(95%CI:0.613-0.881),and Hosmer-Lemeshow test results were P=0.721 and P=0.274,respectively,indicating good model differentiation and calibration.The sensitivity,specificity,and Youden index of the logistic regression model were 77.2%(95%CI:0.670-0.850)、64.4%(95%CI:0.522-0.750)and 0.416,respectively.Conclusion:The established two prediction models will help rehabilitation doctors to preliminarily judge the level of functional independence at discharge and the degree of functional improvement during hospitalization according to the status of patients with TBI at admission,and provide reference for rehabilitation medical work.

traumatic brain injuryactivity of daily livinglogistic regressionprediction model

唐芷晴、苏文龙、党辉、张皓

展开 >

首都医科大学康复医学院,北京市,100068

中国康复研究中心

康复大学

山东大学齐鲁医学院

展开 >

脑外伤 日常生活活动能力 逻辑回归 预测模型

国家重点研发计划项目中国康复研究中心重点课题

2018YFC20017032021ZX-02

2024

中国康复医学杂志
中国康复医学会

中国康复医学杂志

CSTPCD北大核心
影响因子:2.026
ISSN:1001-1242
年,卷(期):2024.39(7)