首页|ENSOMIM:一种新型ENSO时空预测模型

ENSOMIM:一种新型ENSO时空预测模型

扫码查看
为了提高厄尔尼诺南方涛动(El Niño-southern oscillation,ENSO)预测的准确性,解决卷积核难以捕获ENSO的长距离前兆的问题,将ENSO预测视为一个时空序列预测问题,并提出一种基于注意力机制和循环神经网络的ENSO非稳态时空预测深度学习模型,称为ENSOMIM.该模型通过提出的新型注意力机制BGAM来局部和全局交互地学习空间特征,并使用高阶非线性时空网络对长期的时间序列特征进行编码.由于ENSO观测数据集样本数量少,为了更充分地训练模型,采用迁移学习的方法,使用历史模式模拟数据进行预训练再利用观测数据校正模型.实验结果表明,ENSOMIM更适合于大区域和长期的预测.在1984-2014年验证期间,ENSOMIM的Niño3.4指数的全季节相关性技巧比经典的卷积神经网络提高16%,均方误差降低17%,它可以为长达18个月的提前期提供有效预测,并且在23个月的提前期内相关技巧达到0.45.因此,ENSOMIM可以作为预测ENSO事件的有力工具.
ENSOMIM:a novel spatiotemporal model for ENSO forecasts
In order to improve the accuracy of El Niño-southern oscillation(ENSO)prediction and solve the problem related to the difficulty in capturing long-range precursors of ENSO of convolution kernels,a deep learning model,called ENSOMIM,for ENSO unsteady spatiotemporal prediction based on attention mechanisms and recurrent neural networks was proposed via considering the ENSO prediction as a spatiotemporal series prediction problem.This model was used to learn space features of local and global inter-action via new attention mechanism BGAM,while long-term time series features was encoded by high-order nonlinear spatiotempo-ral networks.Due to the small number of samples in the ENSO observation data set,transfer learning method was adopted to train the model more fully,in which the historical model simulation data was used for pre training,and the observation data was used to correct the model.The experimental results show that ENSOMIM is more suitable for large-scale and long-term prediction.During the validation period from 1984 to 2014,the seasonal correlation technique of ENSOMIM's Niño3.4 index increased by 16% com-pared to the classical convolutional neural network,and the mean square error decreased by 17% .It can provide effective predictions for a lead time of up to 18 months,and can achieve relevant skills of 0.45 within a lead time of 23 months.Therefore,ENSOMIM can be a powerful tool for predicting ENSO events.

ENSOclimate disastersspatiotemporal series predictiondeep learningneural network

方巍、沙雨、张霄智

展开 >

南京信息工程大学计算机学院, 南京 210044

数字取证教育部工程研究中心(南京信息工程大学), 南京 210044

大气环境与装备技术协同创新中心(南京信息工程大学), 南京 210044

江苏省计算机信息处理技术重点实验室(苏州大学), 江苏苏州 215000

展开 >

ENSO 气候灾害 时空序列预测 深度学习 神经网络

国家自然科学基金资助项目江苏省计算机信息处理技术重点实验室开放课题资助项目

42075007KJS2275

2024

中国科技论文
教育部科技发展中心

中国科技论文

影响因子:0.466
ISSN:2095-2783
年,卷(期):2024.19(2)
  • 47