首页|知识图谱的双注意力机制推荐方法

知识图谱的双注意力机制推荐方法

扫码查看
为解决知识图谱推荐方法中存在的忽略用户个人信息,或将用户和项目采用相同注意力机制,致使用户和项目的潜在语义表达不充分的问题,提出了一种知识增强的双注意力机制推荐方法.采用交叉压缩融合单元获取用户个人信息和交互历史的潜在特征,以增强用户特征表示;使用不同注意力机制关注用户和项目的重要邻居,以增强知识图谱中的结构信息和语义信息表示.为了验证方法的有效性,在MovieLens-1M、MovieLens-20M、Book-Crossing和Last.FM这4个数据集上进行实验,并与RippletNet、KGAT、CKAN等6种方法进行对比分析.结果表明,本文方法与RippletNet、KGCN、LKGR等方法相比,受试者工作特征曲线下面积(area under the receiver operator characteristic curve,AUC)性能平均提升了5.34%.
Recommendation method for knowledge-enhanced dual-attention mechanism
The ignorance of users'personal information and the usage of the same attention mechanism for users and items lead to insufficient potential semantic expression of users and items in knowledge graph recommendation methods.To address this problem,a knowledge-enhanced double-attention mechanism recommendation method was proposed.The latent features of users'personal information and interaction history was obtained by a cross-compression fusion unit to enhance user feature representation.Important neighbors of users and items were focused by different attention mechanisms to enhance the structural and semantic information repre-sentation in the knowledge graph.To verify the effectiveness of this method,experiments were conducted on four datasets,includ-ing MovieLens-1M,MovieLens-20M,Book-Crossing,and Last.FM.The results were compared with six other methods,includ-ing RippletNet,KGAT,CKAN,et al.The experimental results show that,compared with RippletNet,KGCN,LKGR,and other methods,the area under the receiver operator characteristic curve(AUC)performance of the method proposed herein is improved averagely of 5.34% .

knowledge graphrecommendation methodknowledge enhancementdual attention mechanism

周北京、王海荣、王怡梦、马赫

展开 >

北方民族大学计算机科学与工程学院,银川 750021

图像图形智能处理国家民委重点实验室(北方民族大学),银川 750021

知识图谱 推荐方法 知识增强 双注意力机制

宁夏回族自治区教育厅高等学校科学研究项目北方民族大学研究生创新项目中央高校基本科研业务费专项资金资助项目

NYG2022051YCX231462022PT_S04

2024

中国科技论文
教育部科技发展中心

中国科技论文

影响因子:0.466
ISSN:2095-2783
年,卷(期):2024.19(2)
  • 31