首页|基于改进YOLOv5算法的红外图像行人目标检测

基于改进YOLOv5算法的红外图像行人目标检测

扫码查看
针对红外图像中行人检测算法准确率低、漏检等问题,提出了一种基于改进YOLOv5s的红外行人目标检测方法.首先,利用Transformer编码结构替换C3模块中的Bottleneck结构,以加强检测网络的特征融合能力;其次,利用递归门控卷积gnConv对视觉感受野模块RFB进行改进,并在YOLOv5s头部检测网络前加入改进的RF-gnConv模块,以提高模型对各种复杂场景行人检测的适应力;最后,利用OTCBVS数据集对算法模型进行验证.结果显示:改进后的算法模型平均精度均值达到97.3%,检测速度为63帧/s,验证了改进算法对红外图像中行人检测的有效性.
Improved YOLOv5-based infrared pedestrian target detection
In order to solve the problem of current pedestrian detection algorithms for infrared images in terms of low accuracy and missing detection,an infrared pedestrian target detection method based on improved YOLOv5s was proposed.Firstly,the Trans-former coding structure was utilized to replace the Bottleneck structure in the C3 module in order to strengthen the feature fusion capability of the detection network.Secondly,the recursive gated convolution gnConv was utilized to improve the visual sensory field module RFB,and the improved RF-gnConv module was added in front of the YOLOv5s head detection network,leading to the improvements of the model's resilience to pedestrian detection in various complex scenes.Finally,the algorithm model was vali-dated using the OTCBVS dataset.The results show that the improved algorithm model achieves an average accuracy of 97.3% ,and the detection speed is 63 frames/s,indicating the effectiveness of improved algorithm,mentioned in this paper,for the detection of pedestrians in infrared images.

infrared imagepedestrian detectiondeep learningreceptive field

高正中、于明沆、孟晗、殷秀程

展开 >

山东科技大学电气与自动化工程学院, 山东青岛 266000

红外图像 行人检测 深度学习 视觉感受野

山东省自然科学基金资助项目

ZR2020MF071

2024

中国科技论文
教育部科技发展中心

中国科技论文

影响因子:0.466
ISSN:2095-2783
年,卷(期):2024.19(2)
  • 16