首页|基于两阶段随机维纳过程的机车车轮剩余寿命预测

基于两阶段随机维纳过程的机车车轮剩余寿命预测

扫码查看
为探究机车车轮退化过程中呈现的两阶段特征问题,提出一种基于两阶段维纳过程的车轮剩余寿命预测方法.利用两阶段维纳过程模型建立车轮轮缘退化模型,通过随机化漂移系数表征车轮退化过程中存在的个体差异;利用期望最大化(expec-tation maximum,EM)算法及贝叶斯理论实现了退化模型参数的离线估计与在线更新;通过Schwarz信息准则(Schwarz informa-tion criterion,SIC)判断并找到车轮退化过程中存在的变点;最后通过某机车车轮实测轮缘退化数据进行了实例验证.结果表明:与单阶段退化模型相比,考虑存在变点的两阶段退化模型更符合现场实际且在车轮80%寿命分位点处预测精度提升了9.42%.剩余寿命预测结果可以为车轮镟修周期的优化提供一定的理论依据.
Remaining life prediction of locomotive wheel based on two-stage stochastic Wiener process
To study the problems related to two-stage degradation characteristics of locomotive wheels,a two-stage Wiener process-based method for predicting the remaining service life was proposed.The wheel rim degradation model was established by using a two-stage Wiener process model,and the individual differences in the wheel degradation process were characterized by the random drift coefficient.The expectation maximum(EM)algorithm and Bayesian theory were used to achieve offline parameter estimation and online updating of the degradation model parameters.The change point in the wheel degradation process was determined and found via the Schwarz information criterion(SIC).Finally,an example of wheel rim degradation data from a certain locomotive was used for validation.The results show that,compared with the single-stage degradation model,the two-stage degradation model considering the change point is more in line with the field reality,and the prediction accuracy at 80%of the life quantile of the wheel is improved by 9.42%.The prediction of the remaining service life can provide a certain theoretical basis for the optimization of the wheel turning cycle.

remaining wheel lifetwo-stage stochastic Wiener processEM algorithmBayesian theorySIC guidelines

齐金平、刘晓宇、燕大强

展开 >

兰州交通大学机电技术研究所,兰州 730070

中国铁路兰州局集团有限公司机务部,兰州 730000

车轮剩余寿命 两阶段随机维纳过程 EM算法 贝叶斯理论 SIC准则

2024

中国科技论文
教育部科技发展中心

中国科技论文

影响因子:0.466
ISSN:2095-2783
年,卷(期):2024.19(5)