首页|基于差分进化改进混合核极限学习机的指纹定位

基于差分进化改进混合核极限学习机的指纹定位

扫码查看
针对极限学习机(extreme learning machine,ELM)指纹定位泛化性能弱、鲁棒性差等问题,提出一种改进的差分进化算法优化混合核极限学习机的指纹定位方法.该方法利用改进型的Logistic混沌映射提高差分进化算法全局搜索的能力,同时利用动态控制参数法避免差分进化算法陷入局部最优,然后通过改进差分进化算法自适应调整混合核极限学习机的参数,提高训练效率.在线阶段,利用混合核函数提高极限学习机的学习性能和泛化性能,并引入L1惩罚函数防止过拟合.其泛化能力相较于单一核极限学习机提升明显.该方法有92%的测试点定位误差小于0.5 m,平均误差相较于加权K近邻法(weighted K-nearest neighbor,WKNN)降低了32.6%.
Improvements of fingerprint localization of hybrid kernel extreme learning machine based on differential evolution
As a possible countermeasure to the problems such as weak generalization performance and poor robustness in fingerprint localization of extreme learning machine(ELM),an improved differential evolution algorithm was proposed to optimize the finger-print localization method of hybrid kernel extreme learning machine.Specifically,the improved Logistic chaos mapping is used to improve the global search of differential evolution algorithm and the dynamic control parameter method is used to avoid falling into the local optimal.The parameters of hybrid extreme learning machine are adjusted adaptively by the improved differential evolution algorithm to improve the training efficiency.At the online stage,mixed kernel function is used to improve the learning performance and generalization performance of extreme learning machine,and L1 penalty function is introduced to prevent overfitting.Compared with the single core extreme learning machine,its generalization ability improves obviously.The positioning error of 92%test points is less than 0.5 m,and the average error is reduced by 32.6%compared with weighted K-nearest neighbor(WKNN).

hybrid kernel extreme learning machineLogistic chaos mappingdifferential evolution algorithmfingerprint localization

韦嘉恒、刘伟、李卓、刘博、王智豪

展开 >

桂林理工大学信息科学与工程学院,广西桂林 541006

广西嵌入式技术与智能系统重点实验室(桂林理工大学),广西桂林 541006

混合核极限学习机 Logistic混沌映射 差分进化算法 指纹定位

2024

中国科技论文
教育部科技发展中心

中国科技论文

影响因子:0.466
ISSN:2095-2783
年,卷(期):2024.19(5)