首页|基于层次对比生成对抗网络的非配对素描人脸合成

基于层次对比生成对抗网络的非配对素描人脸合成

扫码查看
现有素描人脸合成方法存在过度依赖配对数据和面部细节特征失真、粗糙等问题,尤其在样本非配对场景下,高质量素描人脸图像的合成难度很高.为了解决上述问题,提出一种基于层次对比生成对抗网络(hierarchical contrast generative adver-sarial network,HCGAN)的非配对素描人脸合成方法.在网络结构上,设计了全局素描合成模块,负责素描人脸的合成并保持面部各个局部之间的协调性;设计了局部素描细化模块,用于提升对局部细节的刻画,防止局部细节失真.另外,提出了局部细化损失,提供局部优化的约束,使合成的素描在细节上更逼真.在CUFS数据集上进行消融实验和对比实验验证框架各部分的有效性,结果表明,提出的方法在非配对输入下拥有更好的量化指标,同时生成的素描在细节上更加逼真,且各部分衔接更加自然,视觉效果更好.
Unpaired sketch face synthesis based on hierarchical contrast generative adversarial network
Current facial sketch synthesis methods suffer from excessive reliance on paired datasets as well as coarseness in the ren-dering of facial detail features.Especially in non-paired sample scenarios,the difficulty increases remarkably for the synthesis of high-quality sketch facial images.To address these issues,an unpaired facial sketch synthesis method based on a hierarchical con-trast generative adversarial network(HCGAN)was proposed.Within the network architecture,a global sketch synthesis module was designed to synthesize sketch representations of facial features while maintaining harmonious coordination among different facial regions.A local sketch refinement module was introduced to enhance the portrayal of local details,effectively mitigating the distor-tion of these intricate features.Furthermore,the concept of local refinement loss was introduced to provide local optimization con-straints to enhance the realism of the synthesized sketch,particularly in finer details.A series of ablation experiments and compara-tive studies were conducted on the CUFS dataset to evaluate the effectiveness of each component within the framework.The experi-mental results conclusively demonstrate that the proposed approach yields superior quantitative metrics under unpaired input condi-tions.The generated sketches exhibit greater realism in intricate details,and the transitions between different facial components appear more natural,resulting in enhanced overall visual appeal.

face sketch synthesisunpaired learninggenerative adversarial networkhierarchical contrast network

曹林、王震、杜康宁、郭亚男

展开 >

北京信息科技大学信息与通信工程学院,北京 100029

素描人脸合成 非配对学习 生成对抗网络 层次对比网络

国家自然科学基金资助项目国家自然科学基金资助项目国家自然科学基金资助项目

6220106662001033U20A20163

2024

中国科技论文
教育部科技发展中心

中国科技论文

影响因子:0.466
ISSN:2095-2783
年,卷(期):2024.19(6)