首页|基于注意力特征融合iAFFNet的路面破损检测

基于注意力特征融合iAFFNet的路面破损检测

扫码查看
路面破损检测技术对自动驾驶系统的安全性和可靠性至关重要,针对快速检测和准确定位之间难以平衡的问题,以YOLOv8s网络为基线进行改进,提出结合注意力特征融合的路面破损检测算法iAFFNet.首先,将高效通道注意力(efficient channel attention,ECA)模块整合到骨干网较浅层输出中,以增强网络对关键特征的关注能力,有效地捕获上下文信息.其次,在加强特征提取部分引入迭代注意力特征融合模块(iterative attentional feature fusion,iAFF),以提高模型的定位精度.最后,为了验证所提模型的有效性,在公开数据集和自制数据集下进行实验评估,macro-F1分数分别提升了2.88%和1.30%,mAP分别提升了0.43%和0.54%,模型参数量仅为12.749×106,在不增加运行时间的情况下提高了检测性能.另外,模型能够达到32.72的检测帧率,满足了实时检测的需求.
Pavement damage detection based on attention feature fusion iAFFNet
Pavement damage detection technology is critical to the safety and reliability of autonomous driving systems. To address the challenge related to the difficulty in balancing rapid detection with accurate localization,taking YOLOv8s network as the base-line,an improved pavement damage detection algorithm iAFFNet combining attention feature fusion was proposed. Firstly,the effi-cient channel attention (ECA) mosssdule was integrated into the shallower layers output of the backbone network to enhance the net-work's ability to focus on key features and effectively capture contextual information. Secondly,the iterative attentional feature fusion (iAFF) module was introduced in the enhanced feature extraction stage to improve localization accuracy. Finally,in order to verify the effectiveness of the proposed model,experimental evaluations are carried out on public and self-made datasets. The macro-F1 scores are improved by 2.88% and 1.30% respectively,while the mAP is improved by 0.43% and 0.54% respectively. The model parameters are only 12.749×106,which improves the detection performance without increasing the running time. More-over,frame per second (FPS) of the model achieves 32.7,meeting the requirements for real-time detection.

channel attentionfeature fusioniAFFNetpavement damage detectionYOLOv8s

高嘉晗、张志伟、杨帆

展开 >

河北工业大学电子信息工程学院,天津 300401

通道注意力 特征融合 iAFFNet 路面破损检测 YOLOv8s

2024

中国科技论文
教育部科技发展中心

中国科技论文

影响因子:0.466
ISSN:2095-2783
年,卷(期):2024.19(12)