首页|基于大规模教育测验的认知诊断研究

基于大规模教育测验的认知诊断研究

扫码查看
大规模教育测验数据包含丰富信息,采用认知诊断方法对其进行分析,可以更好地揭示个体的认知过程、发挥测验的诊断功能。本研究以我国某项大型科学素养测验为例,通过验证Q矩阵和选择拟合最佳的认知诊断模型,对学生作答数据进行了认知诊断分析。结果表明,基于科学内容领域和科学能力所标定的Q矩阵拟合最佳;饱和的G-DINA模型拟合最好;学生在科学能力属性上掌握更好,不同掌握模式差异较大。研究应用认知诊断方法对大规模测验进行分析,为后续研究提供了路径和方法上的参考。
Application of Cognitive Diagnosis Models to a Large-scale Educational Assessment
Large-scale educational assessment data contains abundant information.Applying cognitive diagnosis methods to analyze such data can more effectively uncover individual cognitive processes and enhance the diagnostic function of assessments.Taking a large-scale science assessment in China as a case study,this study applied cognitive diagnosis analysis to students'response data by verifying the Q-matrix and selecting an appropriate cognitive diagnosis model.The results indicate that the Q-matrix,including both science content and science competence,is the most suitable model.Moreover,the saturated G-DINA model fits the large-scale assessment data better than other unsaturated models.In addition,students demonstrated a stronger mastery of science competence attribute,with significant differences observed across various mastery modes.This application of cognitive diagnosis methods to analyze large-scale assessments provided valuable insights for future research.

cognitive diagnosis theoryscience literacylarge-scale educational assessmentscience education

杨建强、温红博、杨涛

展开 >

北京师范大学,北京 100875

认知诊断 科学素养 大规模教育测验 科学教育

2025

中国考试
教育部考试中心

中国考试

北大核心
影响因子:0.393
ISSN:1005-8427
年,卷(期):2025.(1)