首页|二维原子-分子异质结的制备及其类脑器件应用

二维原子-分子异质结的制备及其类脑器件应用

扫码查看
类脑计算因模仿人脑高效且低能耗的信息处理特性,成为解决冯·诺依曼计算机架构在能源效率和处理速度方面瓶颈的有力方案.然而类脑计算器件中传统异质结构存在的性能单一、制作困难、结合力差等问题限制了技术的应用.新型二维原子-分子异质结(2DAMH)通过在二维材料表面共价修饰功能性分子提供的稳定性和功能可调性为类脑器件领域带来了新的机遇.本综述总结了2DAMH在电子特性、合成策略及类脑器件应用方面的最新进展,尤其是在定制界面特性及模拟生物突触功能上的潜力.尽管共价修饰在精确性、规模化生产和理论完善度等方面仍面临挑战,但不断涌现的创新研究正在积极探索解决方案,展现出在类脑计算智能系统中实现更高效、更节能计算模式的巨大潜力.
Two dimensional atomic-molecular heterojunctions:fabrication and brainoid devices
Neuromorphic computing,with its emulation of the brain's efficient and low-energy information processing characteristics,has emerged as a potent solution to the energy efficiency and processes speed bottlenecks inherent in traditional computing architectures.In the face of issues such as the singularity of performance,fabrication difficulties,and weak integration found in heterogeneous structures of conventional neuromorphic devices,the novel two-dimensional atomic-molecular heterostructures(2DAMH)offer new opportunities for the neuromorphic device domain.These heterostructures achieve stability and tunable functionality through the covalent modification of functional molecules on the surface of two-dimensional materials.This review summarizes the latest advances in 2DAMH with respect to electronic properties,synthesis strategies,and applications in neuromorphic devices,particularly highlighting the potential in customizing interfacial properties and simulating biological synaptic functions.Despite challenges in precision,scalability,and theoretical maturity associated with covalent modification,innovative research continues to emerge,actively seeking solutions and demonstrating immense potential for achieving more efficient and energy-saving computational models in neuromorphic intelligent systems.

two dimensional atomic-molecular heterojunctionscovalent modificationartificial synapsesbrainoid devices

舒帆、陈威林、刘钢、刘佳璇、陈彧

展开 >

上海交通大学电子信息与电气工程学院微纳电子系,上海 200240

华东理工大学化学与分子工程学院,上海 200237

二维原子-分子异质结 共价修饰 人工突触 类脑器件

国家重点研发计划国家自然科学基金国家自然科学基金国家自然科学基金

2022YFB4700102621115402716197409051961145402

2024

中国科学(化学)
中国科学院

中国科学(化学)

CSTPCD北大核心
影响因子:0.685
ISSN:1674-7224
年,卷(期):2024.54(4)
  • 205