首页|基于机器学习的立方钙钛矿形成能和磁性的预测

基于机器学习的立方钙钛矿形成能和磁性的预测

扫码查看
钙钛矿材料因其具有优异的性能而受到了广泛关注,快速预测其物理性质具有重要意义.本文发展了一种新的描述符,大大提高了立方钙钛矿形成能和磁性的预测效率.我们通过元素属性相加或相除发展了一种元素属性矩阵描述符,并基于18928个立方钙钛矿数据,训练了极限树、梯度提升和多层感知机三种机器学习模型,同时评估了形成能、体积归一化磁矩和磁性分类的预测效率.结果发现,其效率远超元素属性统计和基于力场启发的描述符,形成能和磁化强度预测R2分数分别为97%和80%,磁/非磁分类的AUC达到了93%,正确率均在90%以上.本文通过构建一种简单有效的材料描述符,为未来基于机器学习的钙钛矿材料的预测提供了重要参考.
Machine-learning-based prediction of cubic perovskite formation energy and magnetism
Perovskite materials have garnered considerable attention due to their excellent properties.Thus,the accurate prediction of their physical properties is paramount.In this study,we developed an element attribute matrix descriptor via element attribute addition or phase division to improve the prediction efficiency of formation energy and magnetism of cubic perovskite.For this purpose,we trained three machine-learning models,namely extra tree,gradient boosting,and multi-layer perceptron,based on 18928 cubic perovskite data.Subsequent evaluation was conducted to evaluate the predictive efficiency of formation energy,volume-normalized magnetic moment,and magnetic classification.The results revealed that the efficiency of the developed descriptor was far higher than that of element attribute statistics and force-field inspired descriptors.The R2 fractions for the prediction of formation energy and magnetization were found to be 97%and 80%,respectively.In addition,the AUC of magnetic/non-magnetic classification reached 93%,with the accuracy exceeding 90%.Thus,this paper provides an important reference for the prediction of perovskite materials based on machine learning by constructing a simple and effective material descriptor.

cubic perovskitesformation energymagnetic momentmagnetic classificationmachine learningmaterial descriptor

陈杰、宋一言、李树宗、阙志雄、张卫兵

展开 >

柔性电子材料基因工程湖南省重点实验室,长沙 410114

长沙理工大学物理与电子科学学院,长沙 410114

立方钙钛矿 形成能 磁化强度 磁分类 机器学习 材料描述符

国家自然科学基金霍英东教育基金会第十六届高等院校青年教师基金湖南省杰出青年基金

118740921610052021JJ10039

2024

中国科学(技术科学)
中国科学院

中国科学(技术科学)

CSTPCD北大核心
影响因子:0.752
ISSN:1674-7259
年,卷(期):2024.54(2)
  • 48