首页|基于去伪加权方差最小化算法的大型复杂零部件局部配准全局方法研究

基于去伪加权方差最小化算法的大型复杂零部件局部配准全局方法研究

扫码查看
以汽车飞轮壳、车身为典型代表的大型复杂零部件机器人加工质量高度依赖于测量技术。针对现有点云配准算法难以抑制由于结构偏差、余量分布不均和各种测量固有缺陷所引起的匹配偏差问题,本文围绕局部配准定位全局的思路,提出一种去伪加权方差最小化(DPWVM)算法用于点云精配准。建立自适应比例因子调节的权重函数,区分结构偏差点云和其他异常点云,从而对每个点对距离施加合理权重,以降低结构偏差点云对配准精度的影响。进一步,统一点到点距离和点到面距离,建立自适应协调距离,以提升算法收敛稳定性。本文所提算法在汽车飞轮壳局部配准定位全局的过程中可有效提高配准精度并抑制匹配倾斜,相比于ICP、VMM算法,绝对定位精度分别提升18。9%和66。7%,匹配倾斜抑制程度分别提升25。9%和85。3%,与WPMAVM算法相比,收敛稳定性进一步提高。此外,本文所提方法仅需单次数据采集即可有效配准定位,极大地提高了配准效率。
Local-to-global registration method of large complex components based on a de-pseudo-weighted variance minimization algorithm
The machining quality of complex components,such as the automobile flywheel shell and body,highly depends on measurement technology.Focusing on the problem of matching deviation caused by structural deviation,uneven margin distribution,and various inherent measurement defects,in this paper,a de-pseudo-weighted variance minimization algorithm is proposed for fine registration according to the idea of local-to-global registration.A weight function adjusted via an adaptive scale factor is established to distinguish the structural deviation point cloud from other abnormal point clouds.Thus,a reasonable weight is applied to the distance between each point,and the influence of the structural deviation point cloud on the registration accuracy can be effectively reduced.Furthermore,the adaptive coordination distance is established by the unified point-to-point distance and the point-to-plane distance to enhance algorithm convergence stability.The algorithm proposed in this paper can effectively enhance registration accuracy and inhibit the matching distortion in the process of local registration and global positioning of the automobile flywheel shell.Compared with the iterative closure point and variance minimization algorithms,the absolute positioning accuracy is increased by 18.9%and 66.7%,respectively,and the matching distortion inhibition degree is improved by 25.9%and 85.3%,respectively.Additionally,compared with the weighted plus-and-minus allowance variance minimization algorithm,the convergence stability is improved.Moreover,the proposed method can effectively register the positioning with only a single data acquisition,greatly improving registration efficiency.

de-pseudo-weighted variance minimizationlarge complex componentslocal registrationmatching distortionadaptive coordination distance

吴浩、冯晓志、华林、朱大虎

展开 >

湖北隆中实验室,襄阳 441000

武汉理工大学现代汽车零部件技术湖北省重点实验室,武汉 430070

武汉理工大学汽车零部件技术湖北省协同创新中心,武汉 430070

去伪加权方差最小化 大型复杂零部件 局部配准 匹配失真 自适应协调距离

国家自然科学基金湖北省重点研发计划湖北隆中实验室自主创新项目

519754432022BAA0672022ZZ-27

2024

中国科学(技术科学)
中国科学院

中国科学(技术科学)

CSTPCD北大核心
影响因子:0.752
ISSN:1674-7259
年,卷(期):2024.54(3)
  • 36